Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(10): 6122-6132, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424582

RESUMO

In the past few years, rising concerns vis-à-vis global climate change and clean energy demand have brought worldwide attention to developing the 'biomass/organic waste-to-energy' concept as a zero-emission, environment-friendly and sustainable pathway to simultaneously quench the global energy thirst and process diverse biomass/organic waste streams. Bioenergy with carbon capture and storage (BECCS) can be an influential technological route to curb climate change to a significant extent by preventing CO2 discharge. One of the pathways to realize BECCS is via in situ CO2-sorption coupled with a thermal plasma gasification process. In this study, an equilibrium model is developed using RDF as a model compound for plasma assisted CO2-sorption enhanced gasification to evaluate the viability of the proposed process in producing H2 rich syngas. Three different classes of sorbents are investigated namely, a high temperature sorbent (CaO), an intermediate temperature sorbent (Li4SiO4) and a low temperature sorbent (MgO). The distribution of gas species, H2 yield, dry gas yield and LHV are deduced with the varying gasification temperature, reforming temperature, steam-to-feedstock ratio and sorbent-to-feedstock for all three sorbents. Moreover, optimal values of different process variables are predicted. Maximum H2 is noted to be produced at 550 °C for CaO (79 vol%), 500 °C for MgO (29 vol%) and 700 °C (55 vol%) for Li4SiO4 whereas the optimal SOR/F ratios are found to be 1.5 for CaO, 1.0 for MgO and 2.5 for Li4SiO4. The results obtained in the study are promising to employ plasma assisted CO2-sorption enhanced gasification as an efficacious pathway to produce clean energy and thus achieve carbon neutrality.

2.
Sci Total Environ ; 794: 148770, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34225159

RESUMO

Anthropogenic carbon dioxide emissions are the main cause of global climate change. The COVID-19 pandemic has been one of the worst of its kind in the last century with regard to global deaths and, in the absence of any effective treatment, it led to governments worldwide mandating lock-down measures, as well as citizens voluntarily reducing non-essential trips and activities. In this study, the influence of decreased activity on CO2 emissions and on the economy was assessed. The US, EU-28, China and India, representing almost 60% of anthropogenic carbon emissions, were considered as reference entities and the trends were extrapolated to estimate the global impact. This study aimed to deduce initial estimates of anthropogenic CO2 emissions based on the available economic and industrial outputs and activity data, as they could not be directly measured. Sector-wise variations in emissions were modeled by assuming proportionality of the outputs/activities and the resulting emissions. A decline in road traffic was seen up to March 2020 and then a steady growth was observed, with the exception of China where road traffic started to recover by the end of January. The vast majority of passenger flights were grounded and, therefore, global air traffic plummeted by 43.7% from January to May 2020. A considerable drop in coal power production and the annual industrial growth rate was also observed. The overall economic decline led to a drop of 4.9% in annual global gross domestic product (GDP) for Q2 2020. The total global CO2 emissions reduction for January through April 2020 compared to the year before was estimated to be 1749 Mt. CO2 (14.3%) with a maximum contribution from the transportation sector (58.3% among total emissions by sector). Like other previous crises, if the economy rebounds as expected the reductions will be temporary. Long-term impacts can be minimized considering the business as well as lifestyle changes for travel, utilizing virtual structures created during this crisis, and switching to sustainable transportation.


Assuntos
Poluentes Atmosféricos/análise , COVID-19 , Dióxido de Carbono , Dióxido de Carbono/análise , Controle de Doenças Transmissíveis , Humanos , Pandemias
3.
Chemosphere ; 265: 129082, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33309446

RESUMO

Sewage sludge was excluded from the list of component materials for the production of EU fertilizing products and it was banned as feedstock to produce pyrolysis & gasification materials in European Commission's technical proposals for selected new fertilizing materials under the Regulation 2019/1009 (STRUBIAS report). This exclusion of pyrolysis as a viable way to treat sewage sludge was mainly due to the lack of data on the fate of organic pollutants at pyrolysis conditions. In this work, we are addressing this knowledge gap. We studied slow pyrolysis as a potential process to efficiently treat organic pollutants present in stabilized sewage sludge. Sewage sludge was pyrolyzed in a quartz fixed bed reactor at temperatures of 400-800 °C for 2 h and the sludge and resulting sludge-chars were analyzed for the presence of four groups of organic pollutants, namely (i) polychlorinated biphenyls (PCBs), (ii) polycyclic aromatic hydrocarbons (PAHs), (iii) pharmaceuticals, and (iv) endocrine-disrupting and hormonal compounds. Pyrolysis at ≥ 400 °C effectively removed pharmaceuticals (group iii) to below detection limits, whereas pyrolysis at temperatures higher than 600 °C was required to remove more than 99.8% of the compounds from groups i, ii and iv. Based on these findings, we propose, that high temperature (>600 °C) slow pyrolysis can satisfactory remove organic pollutants from the resulting sludge-char, which could be safely applied as soil improver.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirólise , Esgotos , Temperatura
4.
J Vis Exp ; (128)2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29155774

RESUMO

Calcium looping (CaL) is a post-combustion CO2 capture technology that is suitable for retrofitting existing power plants. The CaL process uses limestone as a cheap and readily available CO2 sorbent. While the technology has been widely studied, there are a few available options that could be applied to make it more economically viable. One of these is to increase the oxygen concentration in the calciner to reduce or eliminate the amount of recycled gas (CO2, H2O and impurities); therefore, decreasing or removing the energy necessary to heat the recycled gas stream. Moreover, there is a resulting increase in the energy input due to the change in the combustion intensity; this energy is used to enable the endothermic calcination reaction to occur in the absence of recycled flue gases. This paper presents the operation and first results of a CaL pilot plant with 100% oxygen combustion of natural gas in the calciner. The gas coming into the carbonator was a simulated flue gas from a coal-fired power plant or cement industry. Several limestone particle size distributions are also tested to further explore the effect of this parameter on the overall performance of this operating mode. The configuration of the reactor system, the operating procedures, and the results are described in detail in this paper. The reactor showed good hydrodynamic stability and stable CO2 capture, with capture efficiencies of up to 70% with a gas mixture simulating the flue gas of a coal-fired power plant.


Assuntos
Carbonato de Cálcio/química , Dióxido de Carbono/química , Oxigênio/química , Centrais Elétricas , Compostos de Cálcio/química , Óxidos/química
5.
Faraday Discuss ; 192: 97-111, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27485382

RESUMO

Four types of synthetic sorbents were developed for high-temperature post-combustion calcium looping CO2 capture using Longcal limestone. Pellets were prepared with: lime and cement (LC); lime and flour (LF); lime, cement and flour (LCF); and lime, cement and flour doped with seawater (LCFSW). Flour was used as a templating material. All samples underwent 20 cycles in a TGA under two different calcination conditions. Moreover, the prepared sorbents were tested for 10 carbonation/calcination cycles in a 68 mm-internal-diameter bubbling fluidized bed (BFB) in three environments: with no sulphur and no steam; in the presence of sulphur; and with steam. When compared to limestone, all the synthetic sorbents exhibited enhanced CO2 capture performance in the BFB experiments, with the exception of the sample doped with seawater. In the BFB tests, the addition of cement binder during the pelletisation process resulted in the increase of CO2 capture capacity from 0.08 g CO2 per g sorbent (LF) to 0.15 g CO2 per g sorbent (LCF) by the 10th cycle. The CO2 uptake in the presence of SO2 dramatically declined by the 10th cycle; for example, from 0.22 g CO2 per g sorbent to 0.05 g CO2 per g sorbent in the case of the untemplated material (LC). However, as expected all samples showed improved performance in the presence of steam, and the decay of reactivity during the cycles was less pronounced. Nevertheless, in the BFB environment, the templated pellets showed poorer CO2 capture performance. This is presumably because of material loss due to attrition under the FB conditions. By contrast, the templated materials performed better than untemplated materials under TGA conditions. This indicates that the reduction of attrition is critical when employing templated materials in realistic systems with FB reactors.

6.
J Environ Manage ; 166: 499-511, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26588812

RESUMO

Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more efficient Hg-removal. Overall mercury removal efficiencies from flue gas can attain 80-95%, depending on sorbent type/impregnation, sorbent surplus and operating conditions.


Assuntos
Poluentes Ambientais/química , Incineração , Mercúrio/química , Resíduos Sólidos , Adsorção , Catálise , Carvão Mineral , Cinza de Carvão/química , Poluentes Ambientais/análise , Mercúrio/análise , Oxirredução , Sulfetos/química , Enxofre/química , Termodinâmica , Gerenciamento de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA