Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Astron ; 7(10): 1228-1234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859938

RESUMO

Massive stars die in catastrophic explosions that seed the interstellar medium with heavy elements and produce neutron stars and black holes. Predictions of the explosion's character and the remnant mass depend on models of the star's evolutionary history. Models of massive star interiors can be empirically constrained by asteroseismic observations of gravity wave oscillations. Recent photometric observations reveal a ubiquitous red noise signal on massive main sequence stars; a hypothesized source of this noise is gravity waves driven by core convection. We present three-dimensional simulations of massive star convection extending from the star's centre to near its surface, with realistic stellar luminosities. Using these simulations, we predict the photometric variability due to convectively driven gravity waves at the surfaces of massive stars, and find that gravity waves produce photometric variability of a lower amplitude and lower characteristic frequency than the observed red noise. We infer that the photometric signal of gravity waves excited by core convection is below the noise limit of current observations, and thus the red noise must be generated by an alternative process.

2.
Sci Rep ; 13(1): 1324, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694022

RESUMO

A compelling question at the intersection of physics, neuroscience, and evolutionary biology concerns the extent to which the brains of various species evolved to encode regularities of the physical world. It would be parsimonious and adaptive, for example, for brains to evolve an innate understanding of gravity and the laws of motion, and to be able to detect, auditorily, those patterns of noises that ambulatory creatures make when moving about the world. One such physical regularity of the world is fractal structure, generally characterized by power-law correlations or 1/f ß spectral distributions. Such laws are found broadly in nature and human artifacts, from noise in physical systems, to coastline topography (e.g., the Richardson effect), to neuronal spike patterns. These distributions have also been found to hold for the rhythm and power spectral density of a wide array of human music, suggesting that human music incorporates regularities of the physical world that our species evolved to recognize and produce. Here we show for the first time that 1/fß laws also govern the spectral density of a wide range of animal vocalizations (music), from songbirds, to whales, to howling wolves. We discovered this 1/fß power-law distribution in the vocalizations within all of the 17 diverse species examined. Our results demonstrate that such power laws are prevalent in the animal kingdom, evidence that their brains have evolved a sensitivity to them as an aid in processing sensory features of the natural world.


Assuntos
Música , Animais , Encéfalo , Ruído , Fractais , Exame Físico
3.
Nat Commun ; 11(1): 4710, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948760

RESUMO

Rotational invariance strongly constrains the viscosity tensor of classical fluids. When this symmetry is broken in anisotropic materials a wide array of novel phenomena become possible. We explore electron fluid behaviors arising from the most general viscosity tensors in two and three dimensions, constrained only thermodynamics and crystal symmetries. We find nontrivial behaviors in both two- and three-dimensional materials, including imprints of the crystal symmetry on the large-scale flow pattern. Breaking time-reversal symmetry introduces a non-dissipative Hall component to the viscosity tensor, and while this vanishes for 3D isotropic systems we show it need not for anisotropic materials. Further, for such systems we find that the electronic fluid stress can couple to the vorticity without breaking time-reversal symmetry. Our work demonstrates the anomalous landscape for electron hydrodynamics in systems beyond graphene, and presents experimental geometries to quantify the effects of electronic viscosity.

4.
Phys Rev E ; 101(3-1): 032409, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32290018

RESUMO

Cofilin and ADF are cytoskeleton remodeling proteins that cooperatively bind and fragment actin filaments. Bound cofilin molecules do not directly interact with each other, indicating that cooperative binding of cofilin is mediated by the actin filament lattice. Cofilactin is therefore a model system for studying allosteric regulation of self-assembly. How cofilin binding changes structural and mechanical properties of actin filaments is well established. Less is known about the interaction energies and the thermodynamics of filament fragmentation, which describes the collective manner in which the cofilin concentration controls mean actin filament length. Here, we provide a general thermodynamic framework for allosteric regulation of self-assembly, and we use the theory to predict the interaction energies of experimental actin filament length distributions over a broad range of cofilin binding densities and for multiple cofilactin variants. We find that bound cofilin induces changes in nearby actin-actin interactions, and that these allosteric effects are propagated along the filament to affect up to four neighboring cofilin-binding sites (i.e., beyond nearest-neighbor allostery). The model also predicts that cofilin differentially stabilizes and destabilizes longitudinal versus lateral actin-actin interactions, and that the magnitude, range, asymmetry, and even the sign of these interaction energies can be altered using different actin and cofilin mutational variants. These results demonstrate that the theoretical framework presented here can provide quantitative thermodynamic information governing cooperative protein binding and filament length regulation, thus revealing nanometer length-scale interactions from micron length-scale "wet-lab" measurements.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Regulação Alostérica , Modelos Moleculares , Termodinâmica
5.
Nat Commun ; 9(1): 3394, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140064

RESUMO

Harnessing photoexcited "hot" carriers in metallic nanostructures could define a new phase of non-equilibrium optoelectronics for photodetection and photocatalysis. Surface plasmons are considered pivotal for enabling efficient operation of hot carrier devices. Clarifying the fundamental role of plasmon excitation is therefore critical for exploiting their full potential. Here, we measure the internal quantum efficiency in photoexcited gold (Au)-gallium nitride (GaN) Schottky diodes to elucidate and quantify the distinct roles of surface plasmon excitation, hot carrier transport, and carrier injection in device performance. We show that plasmon excitation does not influence the electronic processes occurring within the hot carrier device. Instead, the metal band structure and carrier transport processes dictate the observed hot carrier photocurrent distribution. The excellent agreement with parameter-free calculations indicates that photoexcited electrons generated in ultra-thin Au nanostructures impinge ballistically on the Au-GaN interface, suggesting the possibility for hot carrier collection without substantial energy losses via thermalization.

6.
Nat Commun ; 8: 14880, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28348402

RESUMO

Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nm resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot-carrier transport from high-field regions, paves the way for improving efficiency in hot-carrier extraction science and nanoscale regio-selective surface chemistry.

7.
Phys Rev Lett ; 115(26): 261302, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26764984

RESUMO

We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular momentum, that has been dropped into a no-firewall black hole. Retrieval is achieved analogously to quantum teleportation by collecting Hawking radiation and performing measurements on the black hole. Importantly, these methods require only the ability to perform measurements from outside the event horizon.

8.
Nat Commun ; 5: 5788, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25511713

RESUMO

Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited 'hot' electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1-2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA