Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659842

RESUMO

Individual recognition is critical for social behavior across species. Whether recognition is mediated by circuits specialized for social information processing has been a matter of debate. Here we examine the neurobiological underpinning of individual visual facial recognition in Polistes fuscatus paper wasps. Front-facing images of conspecific wasps broadly increase activity across many brain regions relative to other stimuli. Notably, we identify a localized subpopulation of neurons in the protocerebrum which show specialized selectivity for front-facing wasp images, which we term wasp cells. These wasp cells encode information regarding the facial patterns, with ensemble activity correlating with facial identity. Wasp cells are strikingly analogous to face cells in primates, indicating that specialized circuits are likely an adaptive feature of neural architecture to support visual recognition.

2.
Curr Biol ; 33(24): 5478-5487.e5, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38065097

RESUMO

The ability to recognize others is a frequent assumption of models of the evolution of cooperation. At the same time, cooperative behavior has been proposed as a selective agent favoring the evolution of individual recognition abilities. Although theory predicts that recognition and cooperation may co-evolve, data linking recognition abilities and cooperative behavior with evidence of selection are elusive. Here, we provide evidence of a selective link between individual recognition and cooperation in the paper wasp Polistes fuscatus through a combination of clinal, common garden, and population genomics analyses. We identified latitudinal clines in both rates of cooperative nesting and color pattern diversity, consistent with a selective link between recognition and cooperation. In behavioral experiments, we replicated previous results demonstrating individual recognition in cooperative and phenotypically diverse P. fuscatus from New York. In contrast, wasps from a less cooperative and phenotypically uniform Louisiana population showed no evidence of individual recognition. In a common garden experiment, groups of wasps from northern populations formed more stable and individually biased associations, indicating that recognition facilitates group stability. The strength of recent positive selection on cognition-associated loci likely to mediate individual recognition is substantially greater in northern compared with southern P. fuscatus populations. Collectively, these data suggest that individual recognition and cooperative nesting behavior have co-evolved in P. fuscatus because recognition helps stabilize social groups. This work provides evidence of a specific cognitive phenotype under selection because of social interactions, supporting the idea that social behavior can be a key driver of cognitive evolution.


Assuntos
Reconhecimento Psicológico , Vespas , Animais , Cognição , Comportamento Social , Fenótipo , Comportamento Cooperativo , Vespas/genética , Evolução Biológica
3.
Curr Opin Insect Sci ; 59: 101083, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423425

RESUMO

The social environment has a direct impact on sensory systems and unquestionable consequences on allocation of neural tissue. Although neuroplasticity is adaptive, responses to different social contexts may be mediated by energetic constraints and/or trade-offs between sensory modalities. However, general patterns of sensory plasticity remain elusive due to variability in experimental approaches. Here, we highlight recent studies in social Hymenoptera showing effects of the social environment on sensory systems. Further, we propose to identify a core set of socially mediated mechanisms that drive sensory plasticity. We hope this approach is widely adopted in different insect clades under a phylogenetic framework, which will allow for a more direct integration of the how and why questions exploring sensory plasticity evolution.


Assuntos
Insetos , Meio Social , Animais , Filogenia , Plasticidade Neuronal
4.
Anim Cogn ; 26(2): 589-598, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36245014

RESUMO

Visual individual recognition requires animals to distinguish among conspecifics based on appearance. Though visual individual recognition has been reported in a range of taxa including primates, birds, and insects, the features that animals require to discriminate between individuals are not well understood. Northern paper wasp females, Polistes fuscatus, possess individually distinctive color patterns on their faces, which mediate individual recognition. However, it is currently unclear what role color plays in the facial recognition system of this species. Thus, we sought to test two possible roles of color in wasp facial recognition. On one hand, color may be important simply because it creates a pattern. If this is the case, then wasps should perform similarly when discriminating color or grayscale images of the same faces. Alternatively, color itself may be important for recognition of an image as a "face", which would predict poorer performance on grayscale discrimination relative to color images. We found wasps performed significantly better when discriminating between color faces compared to grayscale versions of the same faces. In fact, wasps trained on grayscale faces did not perform better than chance, indicating that color is necessary for the recognition of an image as a face by the wasp visual system.


Assuntos
Reconhecimento Facial , Vespas , Feminino , Animais , Reconhecimento Psicológico
5.
J Phys Chem A ; 126(27): 4476-4481, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35764531

RESUMO

The oxidation products of dimethyl sulfide (DMS) contribute to the production and growth of cloud condensation nuclei (CCN) in the marine boundary layer. Recent work demonstrates that DMS is oxidized by OH radicals to the stable intermediate hydroperoxymethyl thioformate (HPMTF), which is both globally ubiquitous and efficiently lost to multiphase processes in the marine atmosphere. At present, there are no experimental measurements of the reactive uptake of HPMTF to aerosol particles, limiting model implementation of multiphase HPMTF chemistry. Using an entrained aerosol flow reactor combined with chemical ionization mass spectrometry (CIMS), we measured the reactive uptake coefficient (γ) of HPMTF to dry sodium chloride (NaCl), wet NaCl, and wet sodium iodide (NaI) particles to be (1.9 ± 1.3) × 10-4, (1.6 ± 0.6) × 10-3, and (9.2 ± 2.3) × 10-1, respectively. While we did not directly measure the condensed-phase products of HPMTF reactive uptake in this experiment, the ionization products observed in the CIMS instrument provide mechanistic insight on the reaction mechanism of HPMTF with halides.

6.
PLoS One ; 17(3): e0265009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35353837

RESUMO

Animals are constantly bombarded with stimuli, which presents a fundamental problem of sorting among pervasive uninformative stimuli and novel, possibly meaningful stimuli. We evaluated novelty detection behaviorally in honey bees as they position their antennae differentially in an air stream carrying familiar or novel odors. We then characterized neuronal responses to familiar and novel odors in the first synaptic integration center in the brain-the antennal lobes. We found that the neurons that exhibited stronger initial responses to the odor that was to be familiarized are the same units that later distinguish familiar and novel odors, independently of chemical identities. These units, including both tentative projection neurons and local neurons, showed a decreased response to the familiar odor but an increased response to the novel odor. Our results suggest that the antennal lobe may represent familiarity or novelty to an odor stimulus in addition to its chemical identity code. Therefore, the mechanisms for novelty detection may be present in early sensory processing, either as a result of local synaptic interaction or via feedback from higher brain centers.


Assuntos
Odorantes , Olfato , Animais , Abelhas , Encéfalo , Neurônios/fisiologia , Olfato/fisiologia
7.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34635596

RESUMO

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth's radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO2) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime (τHPMTF < 2 h) and terminates DMS oxidation to SO2 When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.

8.
PLoS Genet ; 17(9): e1009474, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478434

RESUMO

Social interactions have large effects on individual physiology and fitness. In the immediate sense, social stimuli are often highly salient and engaging. Over longer time scales, competitive interactions often lead to distinct social ranks and differences in physiology and behavior. Understanding how initial responses lead to longer-term effects of social interactions requires examining the changes in responses over time. Here we examined the effects of social interactions on transcriptomic signatures at two times, at the end of a 45-minute interaction and 4 hours later, in female Polistes fuscatus paper wasp foundresses. Female P. fuscatus have variable facial patterns that are used for visual individual recognition, so we separately examined the transcriptional dynamics in the optic lobe and the non-visual brain. Results demonstrate much stronger transcriptional responses to social interactions in the non-visual brain compared to the optic lobe. Differentially regulated genes in response to social interactions are enriched for memory-related transcripts. Comparisons between winners and losers of the encounters revealed similar overall transcriptional profiles at the end of an interaction, which significantly diverged over the course of 4 hours, with losers showing changes in expression levels of genes associated with aggression and reproduction in paper wasps. On nests, subordinate foundresses are less aggressive, do more foraging and lay fewer eggs compared to dominant foundresses and we find losers shift expression of many genes in the non-visual brain, including vitellogenin, related to aggression, worker behavior, and reproduction within hours of losing an encounter. These results highlight the early neurogenomic changes that likely contribute to behavioral and physiological effects of social status changes in a social insect.


Assuntos
Comportamento Animal , Genoma de Inseto , Comportamento Social , Vespas/fisiologia , Agressão , Animais , Encéfalo/fisiologia , Feminino , Regulação da Expressão Gênica , Vespas/genética
9.
Trends Ecol Evol ; 36(11): 960-963, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34407919

RESUMO

An investigation into animal behavior data archiving practices revealed low rates of data archiving, frequent issues with archived data, and a near absence of multimedia data from data archives. Increasing archiving of animal behavior data will improve the integrity of current studies and enable new avenues of research.


Assuntos
Arquivos , Comportamento Animal , Animais
10.
Mol Biol Evol ; 38(9): 3832-3846, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34151983

RESUMO

Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.


Assuntos
Receptores Odorantes , Vespas , Animais , Éxons , Receptores Odorantes/genética , Vespas/genética
11.
Biol Lett ; 17(4): 20210073, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33849349

RESUMO

Developmental studies of brain volumes can reveal which portions of neural circuits are sensitive to environmental inputs. In social insects, differences in relative investment across brain regions emerge as behavioural repertoires change during ontogeny or as a result of experience. Here, we test the effects of maturation and social experience on morphological brain development in Polistes fuscatus paper wasps, focusing on brain regions involved in visual and olfactory processing. We find that mature wasps regardless of social experience have relatively larger brains than newly emerged wasps and this difference is driven by changes to mushroom body calyx and visual regions but not olfactory processing neuropils. Notably, social wasps invest more in the anterior optic tubercle (AOT), a visual glomerulus involved in colour and object processing in other taxa, relative to other visual integration centres the mushroom body calyces compared with aged socially naive wasps. Differences in developmental plasticity between visual and olfactory neuropil volumes are discussed in light of behavioural maturation in paper wasps, especially as it relates to social recognition. Previous research has shown that P. fuscatus need social experience to develop specialized visual processing of faces, which is used to individually recognize conspecifics. The present study suggests that the AOT is a candidate brain region that could mediate facial processing in this species.


Assuntos
Vespas , Animais , Encéfalo , Cognição , Reconhecimento Psicológico
12.
J Phys Chem A ; 124(51): 10838-10848, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33307703

RESUMO

We present an examination of the 248 nm VUV (vacuum ultraviolet) laser photolysis of an ozone (O3) and methylamine (CH3NH2) mixture as means to produce aminomethanol (NH2CH2OH). Aminomethanol is predicted to be the direct interstellar precursor to glycine and is therefore an important target for detection in the interstellar medium. However, due to its high reactivity under terrestrial conditions, aminomethanol evades gas-phase spectral detection. The insertion of O(1D) into methylamine is one proposed pathway to form aminomethanol. However, this formation pathway is highly exothermic and results in a complex mixture of reaction products, complicating spectral assignment. Additional reactions between methylamine and the other products of ozone photolysis lead to further complication of the chemistry. Here, we present a systematic experimental study of these reaction pathways. We have used direct absorption millimeter/submillimeter spectroscopy in a supersonic expansion to probe the reaction products, which include formaldehyde (H2CO), methanimine (CH2NH), formamide (HCONH2), and hydrogen cyanide (HCN) and absorption signals arising from at least two additional unknown products. In addition, we examine the effects of reaction time on the chemical formation pathways and discuss them in the context of O(1D) insertion chemistry with methylamine. We have built a kinetics box model to interpret the results that are observed. We then examine the implications of these results for future studies aimed at forming and detecting aminomethanol.

13.
Environ Sci Technol ; 54(19): 12521-12529, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32866385

RESUMO

Dimethyl sulfide (DMS; CH3SCH3), a biogenically produced trace gas emitted from the ocean, accounts for a large fraction of natural sulfur released to the marine atmosphere. The oxidation of DMS in the marine boundary layer (MBL), via the hydrogen abstraction pathway, yields the short-lived methylthiomethylperoxy radical (MSP; CH3SCH2OO). In the remote MBL, unimolecular isomerization of MSP outpaces bimolecular chemistry leading to the efficient formation of hydroperoxymethyl thioformate (HPMTF; HOOCH2SCHO). Here, we report the first ground observations and diurnal profiles of HPMTF mixing ratios, vertical fluxes, and deposition velocities to the ocean surface. Average daytime HPMTF mixing ratios, fluxes, and deposition velocities were recorded at 12.1 pptv, -0.11 pptv m s-1, and 0.75 cm s-1, respectively. The deposition velocity of HPMTF is comparable to other soluble gas phase compounds (e.g., HCOOH and HNO3), resulting in a deposition lifetime of 30 h under typical windspeeds (3 m s-1). A box model analysis incorporating the current mechanistic understanding of DMS oxidation chemistry and geostationary satellite cloud imagery data suggests that the lifetime of HPMTF in the MBL at this sampling location is likely controlled by heterogeneous loss to aerosol and uptake to clouds in the morning and evening.


Assuntos
Atmosfera , Enxofre , Aerossóis
14.
Proc Natl Acad Sci U S A ; 117(9): 4505-4510, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071211

RESUMO

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.

15.
J Exp Biol ; 223(Pt 1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31767739

RESUMO

Experience-dependent plasticity in the central nervous system allows an animal to adapt its responses to stimuli over different time scales. In this study, we explored the impacts of adult foraging experience on early olfactory processing by comparing naturally foraging honey bees, Apis mellifera, with those that experienced a chronic reduction in adult foraging experience. We placed age-matched sets of sister honey bees into two different olfactory conditions, in which animals were allowed to forage ad libitum In one condition, we restricted foraging experience by placing honey bees in a tent in which both sucrose and pollen resources were associated with a single odor. In the second condition, honey bees were allowed to forage freely and therefore encounter a diversity of naturally occurring resource-associated olfactory experiences. We found that honey bees with restricted foraging experiences had altered antennal lobe development. We measured the glomerular responses to odors using calcium imaging in the antennal lobe, and found that natural olfactory experience also enhanced the inter-individual variation in glomerular response profiles to odors. Additionally, we found that honey bees with adult restricted foraging experience did not distinguish relevant components of an odor mixture in a behavioral assay as did their freely foraging siblings. This study highlights the impacts of individual experience on early olfactory processing at multiple levels.


Assuntos
Abelhas/fisiologia , Odorantes , Percepção Olfatória , Animais , Comportamento Alimentar , Feminino , Aprendizagem/fisiologia , Olfato/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-30774186

RESUMO

In ants, bees, and other social Hymenoptera alarm pheromones are widely employed to coordinate colony nest defense. In that context, alarm pheromones elicit innate species-specific defensive behaviors. Therefore, in terms of classical conditioning, an alarm pheromone could act as an unconditioned stimulus (US). Here we test this hypothesis by establishing whether repeated exposure to alarm pheromone in different testing contexts modifies the alarm response. We evaluate colony level alarm responses in the stingless bee, Tetragonisca angustula, which has a morphologically distinct guard caste. First, we describe the overall topology of defense behaviors in the presence of an alarm pheromone. Second, we show that repeated, regular exposure to synthetic alarm pheromone reduces different components of the alarm response, and memory of that exposure decays over time. This observed decrease followed by recovery occurs over different time frames and is consistent with behavioral habituation. We further tested whether the alarm pheromone can act as a US to classically condition guards to modify their defense behaviors in the presence of a novel (conditioned) stimulus (CS). We found no consistent changes in the response to the CS. Our study demonstrates the possibility that colony-level alarm responses can be adaptively modified by experience in response to changing environmental threats. Further studies are now needed to reveal the extent of these habituation-like responses in regard to other pheromones, the potential mechanisms that underlie this phenomenon, and the range of adaptive contexts in which they function at the colony level.

17.
J Vis Exp ; (130)2017 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-29364251

RESUMO

Many scientifically and agriculturally important insects use antennae to detect the presence of volatile chemical compounds and extend their proboscis during feeding. The ability to rapidly obtain high-resolution measurements of natural antenna and proboscis movements and assess how they change in response to chemical, developmental, and genetic manipulations can aid the understanding of insect behavior. By extending our previous work on assessing aggregate insect swarm or animal group movements from natural and laboratory videos using the video analysis software SwarmSight, we developed a novel, free, and open-source software module, SwarmSight Appendage Tracking (SwarmSight.org) for frame-by-frame tracking of insect antenna and proboscis positions from conventional web camera videos using conventional computers. The software processes frames about 120 times faster than humans, performs at better than human accuracy, and, using 30 frames per second (fps) videos, can capture antennal dynamics up to 15 Hz. The software was used to track the antennal response of honey bees to two odors and found significant mean antennal retractions away from the odor source about 1 s after odor presentation. We observed antenna position density heat map cluster formation and cluster and mean angle dependence on odor concentration.


Assuntos
Antenas de Artrópodes/fisiologia , Abelhas/fisiologia , Sistemas Computacionais , Movimento/fisiologia , Animais , Software
18.
Behav Res Methods ; 49(2): 576-587, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27130170

RESUMO

We describe SwarmSight (available at https://github.com/justasb/SwarmSight ), a novel, open-source, Microsoft Windows software tool for quantitative assessment of the temporal progression of animal group activity levels from recorded videos. The tool utilizes a background subtraction machine vision algorithm and provides an activity metric that can be used to quantitatively assess and compare animal group behavior. Here we demonstrate the tool's utility by analyzing defensive bee behavior as modulated by alarm pheromones, wild-bird feeding onset and interruption, and cockroach nest-finding activity. Although more sophisticated, commercial software packages are available, SwarmSight provides a low-cost, open-source, and easy-to-use alternative that is suitable for a wide range of users, including minimally trained research technicians and behavioral science undergraduate students in classroom laboratory settings.


Assuntos
Comportamento Animal , Software , Gravação em Vídeo/métodos , Algoritmos , Animais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA