Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 20(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421991

RESUMO

Novel high-throughput cultivation techniques create a demand to pre-select strains for in-depth follow-up studies. We report a workflow to identify promising producers of novel natural products by systematically characterizing their metabolomes. For this purpose, 60 strains from four phyla (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) comprising 16 novel species and six novel genera were cultivated from marine and terrestrial sources. Their cellular metabolomes were recorded by LC-MS/MS; data analysis comprised databases MS/MS matching, in silico compound assignment, and GNPS-based molecular networking. Overall, 1052 different molecules were identified from 6418 features, among them were unusual metabolites such as 4-methoxychalcone. Only a minor portion of the 755 features were found in all phyla, while the majority occurred in a single phylogroup or even in a single strain. Metabolomic methods enabled the recognition of highly talented strains such as AEG42_45, which had 107 unique features, among which a family of 28 potentially novel and related compounds according to MS/MS similarities. In summary, we propose that high-throughput cultivation and isolation of bacteria in combination with the presented systematic and unbiased metabolome analysis workflow is a promising approach to capture and assess the enormous metabolic potential of previously uncultured bacteria.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Metabolômica/métodos , Bactérias/metabolismo , Metaboloma
2.
Microorganisms ; 9(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34361930

RESUMO

Planctomycetes are bacteria that were long thought to be unculturable, of low abundance, and therefore neglectable in the environment. This view changed in recent years, after it was shown that members of the phylum Planctomycetes can be abundant in many aquatic environments, e.g., in the epiphytic communities on macroalgae surfaces. Here, we analyzed three different macroalgae from the North Sea and show that Planctomycetes is the most abundant bacterial phylum on the alga Fucus sp., while it represents a minor fraction of the surface-associated bacterial community of Ulva sp. and Laminaria sp. Especially dominant within the phylum Planctomycetes were Blastopirellula sp., followed by Rhodopirellula sp., Rubripirellula sp., as well as other Pirellulaceae and Lacipirellulaceae, but also members of the OM190 lineage. Motivated by the observed abundance, we isolated four novel planctomycetal strains to expand the collection of species available as axenic cultures since access to different strains is a prerequisite to investigate the success of planctomycetes in marine environments. The isolated strains constitute four novel species belonging to one novel and three previously described genera in the order Pirellulales, class Planctomycetia, phylum Planctomycetes.

3.
Environ Microbiol ; 23(3): 1379-1396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331109

RESUMO

Waterbodies such as lakes and ponds are fragile environments affected by human influences. Suitable conditions can result in massive growth of phototrophs, commonly referred to as phytoplankton blooms. Such events benefit heterotrophic bacteria able to use compounds secreted by phototrophs or their biomass as major nutrient source. One example of such bacteria are Planctomycetes, which are abundant on the surfaces of marine macroscopic phototrophs; however, less data are available on their ecological roles in limnic environments. In this study, we followed a cultivation-independent deep sequencing approach to study the bacterial community composition during a cyanobacterial bloom event in a municipal duck pond. In addition to cyanobacteria, which caused the bloom event, members of the phylum Planctomycetes were significantly enriched in the cyanobacteria-attached fraction compared to the free-living fraction. Separate datasets based on isolated DNA and RNA point towards considerable differences in the abundance and activity of planctomycetal families, indicating different activity peaks of these families during the cyanobacterial bloom. Motivated by the finding that the sampling location harbours untapped bacterial diversity, we included a complementary cultivation-dependent approach and isolated and characterized three novel limnic strains belonging to the phylum Planctomycetes.


Assuntos
Cianobactérias , Fitoplâncton , Lagoas , Animais , Cianobactérias/genética , DNA Bacteriano/genética , Patos , Eutrofização , Humanos , Lymnaea , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Front Microbiol ; 11: 1408, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765432

RESUMO

Bacteria of the phylum Planctomycetes occur ubiquitously in marine environments and play important roles in the marine nitrogen- and carbon cycle, for example as scavengers after phototrophic blooms. Here, we describe the isolation and characterization of the planctomycetal strain Enr13T isolated from a Posidonia sp. biofilm obtained from seawater sediment close to Panarea Island, Italy. Phylogenetic tree reconstruction based on 16S rRNA gene sequences and multi-locus sequence analysis supports the delineation of strain Enr13T from characterized species part of the phylum of Planctomycetes. HPLC-MS analysis of culture broth obtained from strain Enr13T revealed the presence of lipophilic metabolites, of which the major compound was isolated by preparative reversed-phase HPLC. The structure of this compound, named stieleriacine D (1), was elucidated utilizing HRESIMS, 1D- and 2D-NMR data as a new N-acylated dehydrotyrosine derivative. Its biosynthesis was proposed based on an in silico gene cluster analysis. Through analysis of the MS/MS spectrum of 1 and its minor derivative, stieleriacine E (2), it was possible to assign the structure of 2 without isolation. 1 showed antibacterial activity, however, the wide distribution of structurally related compounds indicates a potential role as a signaling molecule.

7.
Front Microbiol ; 11: 1458, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754127

RESUMO

Seagrass meadows are ubiquitous, fragile and endangered marine habitats, which serve as fish breeding grounds, stabilize ocean floor substrates, retain nutrients and serve as important carbon sinks, counteracting climate change. In the Mediterranean Sea, seagrass meadows are mostly formed by the slow-growing endemic plant Posidonia oceanica (Neptune grass), which is endangered by global warming and recreational motorboating. Despite its importance, surprisingly little is known about the leaf surface microbiome of P. oceanica. Using amplicon sequencing, we here show that species belonging to the phylum Planctomycetes can dominate the biofilms of young and aged P. oceanica leaves. Application of selective cultivation techniques allowed for the isolation of two novel planctomycetal strains belonging to two yet uncharacterized genera.

8.
Commun Biol ; 3(1): 303, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533057

RESUMO

Bacterial strains of the phylum Planctomycetes occur ubiquitously, but are often found on surfaces of aquatic phototrophs, e.g. alga. Despite slower growth, planctomycetes are not outcompeted by faster-growing bacteria in biofilms on such surfaces; however, strategies allowing them to compensate for slower growth have not yet been investigated. Here, we identified stieleriacines, a class of N-acylated tyrosines produced by the novel planctomycete Stieleria maiorica Mal15T, and analysed their effects on growth of the producing strain and bacterial species likely co-occurring with strain Mal15T. Stieleriacines reduced the lag phase of Mal15T and either stimulated or inhibited biofilm formation of two bacterial competitors, indicating that Mal15T employs stieleriacines to specifically alter microbial biofilm composition. The genetic organisation of the putative stieleriacine biosynthetic cluster in strain Mal15T points towards a functional link of stieleriacine biosynthesis to exopolysaccharide-associated protein sorting and biofilm formation.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Planctomycetales/classificação , Água do Mar/microbiologia , Tirosina/farmacologia , Acilação , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Planctomycetales/genética , Planctomycetales/isolamento & purificação , Planctomycetales/metabolismo , Tirosina/química
9.
Front Microbiol ; 11: 602250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414774

RESUMO

Marine ecosystems serve as global carbon sinks and nutrient source or breeding ground for aquatic animals. Sponges are ancient parts of these important ecosystems and can be found in caves, the deep-sea, clear waters, or more turbid environments. Here, we studied the bacterial community composition of the calcareous sponge Clathrina clathrus sampled close to the island Corsica in the Mediterranean Sea with an emphasis on planctomycetes. We show that the phylum Planctomycetes accounts for 9% of the C. clathrus-associated bacterial community, a 5-fold enrichment compared to the surrounding seawater. Indeed, the use of C. clathrus as a yet untapped source of novel planctomycetal strains led to the isolation of strain KS4T. The strain represents a novel genus and species within the class Phycisphaerae in the phylum Planctomycetes and displays interesting cell biological features, such as formation of outer membrane vesicles and an unexpected mode of cell division.

10.
Nat Microbiol ; 5(1): 126-140, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740763

RESUMO

When it comes to the discovery and analysis of yet uncharted bacterial traits, pure cultures are essential as only these allow detailed morphological and physiological characterization as well as genetic manipulation. However, microbiologists are struggling to isolate and maintain the majority of bacterial strains, as mimicking their native environmental niches adequately can be a challenging task. Here, we report the diversity-driven cultivation, characterization and genome sequencing of 79 bacterial strains from all major taxonomic clades of the conspicuous bacterial phylum Planctomycetes. The samples were derived from different aquatic environments but close relatives could be isolated from geographically distinct regions and structurally diverse habitats, implying that 'everything is everywhere'. With the discovery of lateral budding in 'Kolteria novifilia' and the capability of the members of the Saltatorellus clade to divide by binary fission as well as budding, we identified previously unknown modes of bacterial cell division. Alongside unobserved aspects of cell signalling and small-molecule production, our findings demonstrate that exploration beyond the well-established model organisms has the potential to increase our knowledge of bacterial diversity. We illustrate how 'microbial dark matter' can be accessed by cultivation techniques, expanding the organismic background for small-molecule research and drug-target detection.


Assuntos
Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Bactérias/classificação , Bactérias/citologia , Bactérias/genética , Divisão Celular , Ecossistema , Variação Genética , Genoma Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Metabolismo Secundário , Transdução de Sinais
11.
Nat Commun ; 8: 14853, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393831

RESUMO

Bacteria of the phylum Planctomycetes have been previously reported to possess several features that are typical of eukaryotes, such as cytosolic compartmentalization and endocytosis-like macromolecule uptake. However, recent evidence points towards a Gram-negative cell plan for Planctomycetes, although in-depth experimental analysis has been hampered by insufficient genetic tools. Here we develop methods for expression of fluorescent proteins and for gene deletion in a model planctomycete, Planctopirus limnophila, to analyse its cell organization in detail. Super-resolution light microscopy of mutants, cryo-electron tomography, bioinformatic predictions and proteomic analyses support an altered Gram-negative cell plan for Planctomycetes, including a defined outer membrane, a periplasmic space that can be greatly enlarged and convoluted, and an energized cytoplasmic membrane. These conclusions are further supported by experiments performed with two other Planctomycetes, Gemmata obscuriglobus and Rhodopirellula baltica. We also provide experimental evidence that is inconsistent with endocytosis-like macromolecule uptake; instead, extracellular macromolecules can be taken up and accumulate in the periplasmic space through unclear mechanisms.


Assuntos
Planctomycetales/metabolismo , Amônia/metabolismo , Endocitose , Genômica , Oxirredução , Filogenia , Planctomycetales/classificação , Planctomycetales/genética , Planctomycetales/fisiologia , Proteômica
12.
Front Microbiol ; 8: 202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243229

RESUMO

The cell wall of free-living bacteria consists of peptidoglycan (PG) and is critical for maintenance of shape as dissolved solutes cause osmotic pressure and challenge cell integrity. Surprisingly, the subdivision 4 of the phylum Verrucomicrobia appears to be exceptional in this respect. Organisms of this subdivision are described to be devoid of muramic or diaminopimelic acid (DAP), usually found as components of PG in bacterial cell walls. Here we describe three novel bacterial strains from a freshwater lake, IG15T, IG16bT, and IG31T, belonging to a new genus in the subdivision 4 of Verrucomicrobia which we found to possess PG as part of their cell walls. Biochemical analysis revealed the presence of DAP not only in these novel strains, but also in Opitutus terrae PB90-1T, the closest described relative of strains IG15T, IG16bT, and IG31T. Furthermore, we found that nearly all genes necessary for peptidoglycan synthesis are present in genomes of subdivision 4 members, as well as in the complete genome sequence of strain IG16bT. In addition, we isolated and visualized PG-sacculi for strain IG16bT. Thus, our results challenge the concept of peptidoglycan-less free-living bacteria. Our polyphasic taxonomy approach places the novel strains in a new genus within the family Opitutaceae, for which the name Lacunisphaera gen. nov. is proposed. Strain designations for IG15T, IG16bT and IG31T are Lacunisphaera parvula sp. nov. (=DSM 26814 = LMG 29468), L. limnophila sp. nov. (=DSM 26815 = LMG 29469) and L. anatis sp. nov. (=DSM 103142 = LMG 29578) respectively, with L. limnophila IG16bT being the type species of the genus.

13.
Front Microbiol ; 7: 1242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594849

RESUMO

Planctomycetes are conspicuous, ubiquitous, environmentally important bacteria. They can attach to various surfaces in aquatic habitats and form biofilms. Their unique FtsZ-independent budding cell division mechanism is associated with slow growth and doubling times from 6 h up to 1 month. Despite this putative disadvantage in the struggle to colonize surfaces, Planctomycetes are frequently associated with aquatic phototrophic organisms such as diatoms, cyanobacteria or kelp, whereby Planctomycetes can account for up to 50% of the biofilm-forming bacterial population. Consequently, Planctomycetes were postulated to play an important role in carbon utilization, for example as scavengers after phototrophic blooms. However, given their observed slow growth, such findings are surprising since other faster- growing heterotrophs tend to colonize similar ecological niches. Accordingly, Planctomycetes were suspected to produce antibiotics for habitat protection in response to the attachment on phototrophs. Recently, we demonstrated their genomic potential to produce non-ribosomal peptides, polyketides, bacteriocins, and terpenoids that might have antibiotic activities. In this study, we describe the development of a pipeline that consists of tools and procedures to cultivate Planctomycetes for the production of antimicrobial compounds in a chemically defined medium and a procedure to chemically mimic their interaction with other organisms such as for example cyanobacteria. We evaluated and adjusted screening assays to enable the hunt for planctomycetal antibiotics. As proof of principle, we demonstrate antimicrobial activities of planctomycetal extracts from Planctopirus limnophila DSM 3776, Rhodopirellula baltica DSM 10527, and the recently isolated strain Pan216. By combining UV/Vis and high resolution mass spectrometry data from high-performance liquid chromatography fractionations with growth inhibition of indicator strains, we were able to assign the antibiotic activity to candidate peaks related to planctomycetal antimicrobial compounds. The MS analysis points toward the production of novel bioactive molecules with novel structures. Consequently, we developed a large scale cultivation procedure to allow future structural elucidation of such compounds. Our findings might have implications for the discovery of novel antibiotics as Planctomycetes represent a yet untapped resource that could be developed by employing the tools and methods described in this study.

14.
Nat Commun ; 6: 7116, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25964217

RESUMO

Most bacteria contain a peptidoglycan (PG) cell wall, which is critical for maintenance of shape and important for cell division. In contrast, Planctomycetes have been proposed to produce a proteinaceous cell wall devoid of PG. The apparent absence of PG has been used as an argument for the putative planctomycetal ancestry of all bacterial lineages. Here we show, employing multiple bioinformatic methods, that planctomycetal genomes encode proteins required for PG synthesis. Furthermore, we biochemically demonstrate the presence of the sugar and the peptide components of PG in Planctomycetes. In addition, light and electron microscopic experiments reveal planctomycetal PG sacculi that are susceptible to lysozyme treatment. Finally, cryo-electron tomography demonstrates that Planctomycetes possess a typical PG cell wall and that their cellular architecture is thus more similar to that of other Gram-negative bacteria. Our findings shed new light on the cellular architecture and cell division of the maverick Planctomycetes.


Assuntos
Peptidoglicano/metabolismo , Planctomycetales/citologia , Planctomycetales/fisiologia , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genoma Bacteriano , Ácidos Murâmicos/química , Ácidos Murâmicos/metabolismo , Peptidoglicano/química , Filogenia , Planctomycetales/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
15.
Antonie Van Leeuwenhoek ; 104(4): 551-67, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23982431

RESUMO

Most members of the phylum Planctomycetes share many unusual traits that are unique for bacteria, since they divide independent of FtsZ through asymmetric budding, possess a complex life cycle and comprise a compartmentalized cell plan. Besides their complex cell biological features Planctomycetes are environmentally important and play major roles in global matter fluxes. Such features have been successfully employed in biotechnological applications such as the anaerobic oxidation of ammonium in wastewater treatment plants or the utilization of enzymes for biotechnological processes. However, little is known about planctomycetal secondary metabolites. This is surprising as Planctomycetes have several key features in common with known producers of small bioactive molecules such as Streptomycetes or Myxobacteria: a complex life style and large genome sizes. Planctomycetal genomes with an average size of 6.9 MB appear as tempting targets for drug discovery approaches. To enable the hunt for bioactive molecules from Planctomycetes, we performed a comprehensive genome mining approach employing the antiSMASH secondary metabolite identification pipeline and found 102 candidate genes or clusters within the analyzed 13 genomes. However, as most genes and operons related to secondary metabolite production are exclusively expressed under certain environmental conditions, we optimized Phenotype MicroArray protocols for Rhodopirellula baltica and Planctomyces limnophilus to allow high throughput screening of putative stimulating carbon sources. Our results point towards a previously postulated relationship of Planctomycetes with algae or plants, which secrete compounds that might serve as trigger to stimulate the secondary metabolite production in Planctomycetes. Thus, this study provides the necessary starting point to explore planctomycetal small molecules for drug development.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano , Genômica , Fenótipo , Bactérias/classificação , Evolução Biológica , Análise por Conglomerados , Biologia Computacional/métodos , Genômica/métodos , Metaboloma , Metabolômica/métodos
16.
J Exp Bot ; 64(7): 2005-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23630326

RESUMO

The molybdenum cofactor (Moco) is the active compound at the catalytic site of molybdenum enzymes. Moco is synthesized by a conserved four-step pathway involving six proteins in Arabidopsis thaliana. Bimolecular fluorescence complementation was used to study the subcellular localization and interaction of those proteins catalysing Moco biosynthesis. In addition, the independent split-luciferase approach permitted quantification of the strength of these protein-protein interactions in vivo. Moco biosynthesis starts in mitochondria where two proteins undergo tight interaction. All subsequent steps were found to proceed in the cytosol. Here, the heterotetrameric enzyme molybdopterin synthase (catalysing step two of Moco biosynthesis) and the enzyme molybdenum insertase, which finalizes Moco formation, were found to undergo tight protein interaction as well. This cytosolic multimeric protein complex is dynamic as the small subunits of molybdopterin synthase are known to go on and off in order to become recharged with sulphur. These small subunits undergo a tighter protein contact within the enzyme molybdopterin synthase as compared with their interaction with the sulphurating enzyme. The forces of each of these protein contacts were quantified and provided interaction factors. To confirm the results, in vitro experiments using a technique combining cross-linking and label transfer were conducted. The data presented allowed the outline of the first draft of an interaction matrix for proteins within the pathway of Moco biosynthesis where product-substrate flow is facilitated through micro-compartmentalization in a cytosolic protein complex. The protected sequestering of fragile intermediates and formation of the final product are achieved through a series of direct protein interactions of variable strength.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Coenzimas/metabolismo , Metaloproteínas/metabolismo , Pteridinas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Cofatores de Molibdênio , Ligação Proteica , Sulfurtransferases/genética , Sulfurtransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA