Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Virol ; 98(6): e0004924, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38742901

RESUMO

SARS-CoV-2 3C-like main protease (3CLpro) is essential for protein excision from the viral polyprotein. 3CLpro inhibitor drug development to block SARS-CoV-2 replication focuses on the catalytic non-prime (P) side for specificity and potency, but the importance of the prime (P') side in substrate specificity and for drug development remains underappreciated. We determined the P6-P6' specificity for 3CLpro from >800 cleavage sites that we identified using Proteomic Identification of Cleavage site Specificity (PICS). Cleavage occurred after the canonical P1-Gln and non-canonical P1-His and P1-Met residues. Moreover, P3 showed a preference for Arg/Lys and P3' for His. Essential H-bonds between the N-terminal Ser1 of protomer-B in 3CLpro dimers form with P1-His, but not with P1-Met. Nonetheless, cleavage occurs at P1-Met456 in native MAP4K5. Elevated reactive oxygen species in SARS-CoV-2 infection oxidize methionines. Molecular simulations revealed P1-MetOX forms an H-bond with Ser1 and notably, strong positive cooperativity between P1-Met with P3'-His was revealed, which enhanced peptide-cleavage rates. The highly plastic S3' subsite accommodates P3'-His that displays stabilizing backbone H-bonds with Thr25 lying central in a "'threonine trio" (Thr24-Thr25-Thr26) in the P'-binding domain I. Molecular docking simulations unveiled structure-activity relationships impacting 3CLpro-substrate interactions, and the role of these structural determinants was confirmed by MALDI-TOF-MS cleavage assays of P1'- and P3'-positional scanning peptide libraries carrying a 2nd optimal cut-site as an internal positive control. These data informed the design of two new and highly soluble 3CLproquenched-fluorescent peptide substrates for improved FRET monitoring of 3CLpro activity with 15× improved sensitivity over current assays.IMPORTANCEFrom global proteomics identification of >800 cleavage sites, we characterized the P6-P6' active site specificity of SARS-CoV-2 3CLpro using proteome-derived peptide library screens, molecular modeling simulations, and focussed positional peptide libraries. In P1', we show that alanine and serine are cleaved 3× faster than glycine and the hydrophobic small amino acids Leu, Ile, or Val prevent cleavage of otherwise optimal non-prime sequences. In characterizing non-canonical non-prime P1 specificity, we explored the unusual P1-Met specificity, discovering enhanced cleavage when in the oxidized state (P1-MetOX). We unveiled unexpected amino acid cooperativity at P1-Met with P3'-His and noncanonical P1-His with P2-Phe, and the importance of the threonine trio (Thr24-Thr25-Thr26) in the prime side binding domain I in defining prime side binding in SARS-CoV-2 3CLpro. From these analyses, we rationally designed quenched-fluorescence natural amino acid peptide substrates with >15× improved sensitivity and high peptide solubility, facilitating handling and application for screening of new antiviral drugs.


Assuntos
Proteases 3C de Coronavírus , Proteômica , SARS-CoV-2 , Humanos , Domínio Catalítico , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , COVID-19/virologia , COVID-19/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Peptídeos/química , Proteômica/métodos , SARS-CoV-2/enzimologia , Especificidade por Substrato
2.
Food Funct ; 15(3): 1527-1538, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38231081

RESUMO

Foods rich in riboflavin (Rf) are susceptible to degradation due to oxidative processes with the formation of radicals. Herein, we describe the features and stability of an Mg(II) complex containing ferulic acid (fer) and 1,10-phenanthroline (phen) as chelators: henceforth called Mg(phen)(fer). The electrochemical behavior of Mg(phen)(fer) is pH dependent and results from the stabilisation of the corresponding phenoxyl radical via complexation with Mg(II). This stabilisation enhances the antioxidant activity of Mg(phen)(fer) with respect to free fer and commercial antioxidants. Mg(phen)(fer) scavenges and neutralizes DPPH˙ (IC50 = 15.6 µmol L-1), ABTS˙+ (IC50 = 5.65 µmol L-1), peroxyl radical (IC50 = 5.64 µg L-1) and 1O2 (IC50 = 0.7 µg m-1). Mg(phen)(fer) effectively protects riboflavin (Rf) against photodegradation by quenching the singlet excited states of Rf regardless of the conditions. Also, the complex Mg(phen)(fer) was effectively incorporated into starch films, broadening its applications, as shown by microbiological studies. Thus, Mg(phen)(fer) has high potential for use in Rf-rich foods and to become a new alternative to the synthetic antioxidants currently used.


Assuntos
Antioxidantes , Quelantes , Antioxidantes/farmacologia , Antioxidantes/química , Riboflavina/química , Ácidos Cumáricos
3.
Environ Pollut ; 344: 123237, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159625

RESUMO

Massive amounts of microplastics are transported daily from the oceans and rivers onto beaches. The ocean plastisphere is a hotspot and a vector for antibiotic resistance genes (ARGs) and potentially pathogenic bacteria. However, very little is known about the plastisphere in beach sand. Thus, to describe whether the microplastics from beach sand represent a risk to human health, we evaluated the bacteriome and abundance of ARGs on microplastic and sand sampled at the drift line and supralittoral zones of four beaches of poor and good water quality. The bacteriome was evaluated by sequencing of 16S rRNA gene, and the ARGs and bacterial abundances were evaluated by high-throughput real-time PCR. The results revealed that the microplastic harbored a bacterial community that is more abundant and distinct from that of beach sand, as well as a greater abundance of potential human and marine pathogens, especially the microplastics deposited closer to seawater. Microplastics also harbored a greater number and abundance of ARGs. All antibiotic classes evaluated were found in the microplastic samples, but not in the beach sand ones. Additionally, 16 ARGs were found on the microplastic alone, including genes related to multidrug resistance (blaKPC, blaCTX-M, tetM, mdtE and acrB_1), genes that have the potential to rapidly and horizontally spread (blaKPC, blaCTX-M, and tetM), and the gene that confers resistance to antibiotics that are typically regarded as the ultimate line of defense against severe multi-resistant bacterial infections (blaKPC). Lastly, microplastic harbored a similar bacterial community and ARGs regardless of beach water quality. Our findings suggest that the accumulation of microplastics in beach sand worldwide may constitute a potential threat to human health, even in beaches where the water quality is deemed satisfactory. This phenomenon may facilitate the emergence and dissemination of bacteria that are resistant to multiple drugs.


Assuntos
Microplásticos , Qualidade da Água , Humanos , Plásticos , Areia , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
4.
J Imaging ; 9(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37998082

RESUMO

Communication between Deaf and hearing individuals remains a persistent challenge requiring attention to foster inclusivity. Despite notable efforts in the development of digital solutions for sign language recognition (SLR), several issues persist, such as cross-platform interoperability and strategies for tokenizing signs to enable continuous conversations and coherent sentence construction. To address such issues, this paper proposes a non-invasive Portuguese Sign Language (Língua Gestual Portuguesa or LGP) interpretation system-as-a-service, leveraging skeletal posture sequence inference powered by long-short term memory (LSTM) architectures. To address the scarcity of examples during machine learning (ML) model training, dataset augmentation strategies are explored. Additionally, a buffer-based interaction technique is introduced to facilitate LGP terms tokenization. This technique provides real-time feedback to users, allowing them to gauge the time remaining to complete a sign, which aids in the construction of grammatically coherent sentences based on inferred terms/words. To support human-like conditioning rules for interpretation, a large language model (LLM) service is integrated. Experiments reveal that LSTM-based neural networks, trained with 50 LGP terms and subjected to data augmentation, achieved accuracy levels ranging from 80% to 95.6%. Users unanimously reported a high level of intuition when using the buffer-based interaction strategy for terms/words tokenization. Furthermore, tests with an LLM-specifically ChatGPT-demonstrated promising semantic correlation rates in generated sentences, comparable to expected sentences.

5.
Microorganisms ; 11(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37630495

RESUMO

In 2019, the largest oil spill ever recorded in tropical oceans in terms of extent occurred in Brazil. The oil from the spill was collected directly from the environment and used in an exposure experiment with the endangered reef-building coral Mussismilia harttii. The treatments of the experiment were control (without oil), 1% oil, 2.5% oil, and direct contact of coral with oil. The most abundant hydrocarbon in the seawater of the experiment was phenatrene, which is toxic to corals. However, overall, the concentration of PAHs was not very high. The analysis of the maximum photosynthetic capacity of Symbiodiniaceae dinoflagellates showed a small impact of oil on corals, mainly on the contact treatment. However, coral microbiomes were affected in all oil treatments, with the contact treatment showing the most pronounced impact. A greater number and abundance of stress-indicating and potentially pathogenic bacteria were found in all oil treatments. Finally, this highly weathered oil that had lain in the ocean for a long time was carrying potentially coral-pathogenic bacteria within the Vibrionaceae family and was able to transmit some of these bacteria to corals. Bacteria within Vibrionaceae are the main causes of disease in different species of corals and other marine organisms.

6.
Front Microbiol ; 14: 1106422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925466

RESUMO

Mixed tree plantations have been studied because of their potential to improve biomass production, ecosystem diversity, and soil quality. One example is a mixture of Eucalyptus and Acacia trees, which is a promising strategy to improve microbial diversity and nutrient cycling in soil. We examined how a mixture of these species may influence the biochemical attributes and fungal community associated with leaf litter, and the effects on litter decomposition. We studied the litter from pure and mixed plantations, evaluating the effects of plant material and incubation site on the mycobiome and decomposition rate using litterbags incubated in situ. Our central hypothesis was litter fungal community would change according to incubation site, and it would interfere in litter decomposition rate. Both the plant material and the incubation locale significantly affected the litter decomposition. The origin of the litter was the main modulator of the mycobiome, with distinct communities from one plant species to another. The community changed with the incubation time but the incubation site did not influence the mycobiome community. Our data showed that litter and soil did not share the main elements of the community. Contrary to our hypothesis, the microbial community structure and diversity lacked any association with the decomposition rate. The differences in the decomposition pattern are explained basically as a function of the exchange of nitrogen compounds between the litter.

7.
Environ Res ; 216(Pt 4): 114710, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334830

RESUMO

The collapse of the Fundão tailings dam (Minas Gerais, Brazil) was the largest environmental disaster in Brazil's history and in the world mining industry. This disaster carried approximately 55 million m3 of iron ore tailings along the rivers and the lagoons of the Doce river basin. Although multiple studies assessed the impact on microbial communities in those rivers and lagoons right after the dam rupture, it is not known whether the microbiome in those environments remains impacted years after the disaster. Assessing the microbiome is very important to evaluate impacts and evaluate the health of the environment, due to the several ecological roles played by microorganisms. Here, we evaluated the impact of the dam failure on water and sediment bacteriome and archaeome by high-throughput next-generation sequencing. Samples were taken from two rivers and six lagoons during the dry and rainy seasons approximately three years post disturbance. The results showed a large number and abundance of microbial groups associated with the presence of heavy metals and mine tailings sediments. Some of these microorganisms were also reported in large abundance in the impacted rivers shortly after the Fundão dam rupture. Among the most abundant microorganisms in the Doce River, we can highlight the bacteria hgcI clade and the archaea Nitrososphera sp. in the water, and the bacteria Anaerolineaceae sp. in the sediment. These results suggest that the microbiome of the rivers and the lagoons in the Doce river basin remains severely impacted by the Fundão tailings dam failure even three years after the disaster. The presence of those microorganisms can also help to assess the occurrence of the Fundão dam sediment in other environments.


Assuntos
Desastres , Poluentes Químicos da Água , Rios , Monitoramento Ambiental , Brasil , Poluentes Químicos da Água/análise , Mineração , Água
8.
Protein Expr Purif ; 201: 106174, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130682

RESUMO

Cysteine peptidases are involved in physiological processes of insect development and have been considered as potential targets for the development of insect control strategies. In this study, we obtained a recombinant cysteine cathepsin L (AsCathL) from leaf-cutting ant (Atta sexdens), a species from the order Hymenoptera who causes enormous damage to crops, natural forests and reforested areas. RT-qPCR showed AsCathL expression throughout insect development and in all body parts of the adult insect analysed, suggesting its role as a lysosomal cathepsin. AsCathL encodes a protein of 320 amino acid residues consisting of a pro-peptide and the mature with amino acids sequence over 67% similarity with lysosomal cathepsin L of species from Lepidoptera and Diptera. Phylogenetic tree revealed that AsCathL is very similar to predicted cathepsins found in other ants. Recombinant AsCathL was expressed in insoluble form by Escherichia coli Arctic Express (DE3) RIL, purified under denaturing conditions and refolded. The enzyme showed hydrolytic activity in vitro towards synthetic substrate Z-Phe-Arg-AMC at acidic pH. Synthetic inhibitor E-64 acted against peptidase activity and a study regarding the interaction between E-64 and AsCathL using nuclear magnetic resonance (NMR) revealed that 83.18% from all E-64 molecules are irreversibly bound to AsCathL. In addition, the proteolytic activity of AsCathL was strongly inhibited by recombinant sugarcane cystatins with Ki ranging from 0.6 nM to 2.95 nM. To the best of our knowledge this is the first report characterizing a cysteine peptidase from leaf-cutting ants, which may contribute to future studies of ants' cathepsins.


Assuntos
Formigas , Cistatinas , Cisteína Proteases , Animais , Formigas/genética , Catepsina L , Cisteína , Cisteína Proteases/genética , Peptídeos , Filogenia
9.
Anaerobe ; 77: 102629, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985606

RESUMO

Archaea comprise a unique domain of organisms with distinct biochemical and genetic differences from bacteria. Methane-forming archaea, methanogens, constitute the predominant group of archaea in the human gut microbiota, with Methanobrevibacter smithii being the most prevalent. However, the effect of methanogenic archaea and their methane production on chronic disease remains controversial. As perturbation of the microbiota is a feature of chronic conditions, such as cardiovascular disease, neurodegenerative diseases and chronic kidney disease, assessing the influence of archaea could provide a new clue to mitigating adverse effects associated with dysbiosis. In this review, we will discuss the putative role of archaea in the gut microbiota in humans and the possible link to chronic diseases.


Assuntos
Euryarchaeota , Microbioma Gastrointestinal , Humanos , Archaea/genética , Methanobrevibacter/genética , Metano , Doença Crônica
10.
J Am Nutr Assoc ; 41(8): 788-795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35512757

RESUMO

Dysbiosis is recognized as a new cardiovascular disease (CVD) risk factor in hemodialysis (HD) patients because it is linked to increased generation in the gut of uremic toxins such as trimethylamine N-Oxide (TMAO) from dietary precursors (choline, betaine, or L-carnitine). Nutritional strategies have been proposed to modulate the gut microbiota and reduce the production of these toxins. This study aimed to evaluate the effect of amylose-resistant starch (RS) supplementation on TMAO plasma levels in HD patients.We conducted a randomized, double-blind, placebo-controlled trial (NCT02706808) with patients undergoing HD enrolled in a previous pilot study. The participants were allocated to RS or placebo groups to receive 16 g/d of RS or placebo for 4 weeks. Plasma TMAO, choline, and betaine levels were measured with LC-MS/MS. Fecal microbiome composition was evaluated by 16S ribosomal RNA sequencing, followed by a search for TMA-associated taxa. Anthropometric, routine biochemical parameters, and food intake were evaluated.Twenty-five participants finished the study, 13 in the RS group, and 12 in the placebo group. RS supplementation did not reduce TMAO plasma levels. Moreover, no significant alterations were observed in choline, betaine, anthropometric, biochemical parameters, or food intake in both groups. Likewise, RS was not found to exert any influence on the proportion of potential TMA-producing bacterial taxa in fecal matter.RS supplementation did not influence plasma TMAO, choline, betaine, or fecal taxa potentially linked to TMAO. Thus, RS does not seem to modify the TMA-associated bacterial taxa, precursors of TMAO.Supplemental data for this article is available online at https://doi.org/10.1080/07315724.2021.1967814 .


Assuntos
Betaína , Amido Resistente , Humanos , Projetos Piloto , Cromatografia Líquida , Espectrometria de Massas em Tandem , Colina , Diálise Renal/efeitos adversos , Bactérias , Suplementos Nutricionais
11.
Appl Biochem Biotechnol ; 194(7): 3145-3166, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35349085

RESUMO

The production of biofuels using sugarcane bagasse (SCB) as substrate can be considered an environmentally friendly approach, due to the possibility of combining energy production with the reuse of agroindustrial wastes. This study was undertaken to explore the applicability of a new extract with the enzymes (Lacmix) isolated from Chaetomium cupreum for SCB pretreatment. Lacmix was more active at pH of 2.2 to 4 and 50 to 60 °C. Further, the individual and mutual effects of SCB concentration (6.6 to 23.4 g L- 1), enzyme concentration (0.066 to 0.234 U L- 1), and incubation time of the SCB with Lacmix (19 to 221 min) on SCB pretreatment were evaluated using a response surface methodology and central composite design. The optimized conditions were 23.4 g L- 1 SCB, 0.234 U mL- 1 laccases, and 2.44 h resulting in 547 ± 108 mg L- 1 of total sugars. This value agrees with the predicted value (455 ± 41 mg L- 1) by the statistical model. Through the SCB pretreated with Lacmix fermentation, 96.1% more H2 and 22.5% more organic acids were observed compared to SCB without pretreatment. Therefore, laccases improve delignification, maximizing biomass fermentation for biofuel production.


Assuntos
Saccharum , Biocombustíveis , Celulose/química , Fermentação , Hidrólise , Lacase , Compostos Orgânicos , Saccharum/química
12.
Sci Total Environ ; 807(Pt 2): 151777, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34808168

RESUMO

The failure of the Fundão Dam, considered the world's largest mining disaster, released more than 55 million m3 of ore tailings into the environment. The sediment plume formed by water and tailings spread along approximately 663 km of water bodies of the Doce River basin. It reached the Atlantic Ocean sixteen days after the dam failure. However, the effects of the dam failure in the marine coastal areas years after the disaster are still unknown. This study aims to evaluate water and sediment microbial communities of nearby coastal areas three years after the Fundão Dam failure, using 16S rRNA gene amplicon sequencing. A total of 441 samples from 25 locations were collected during two different seasons (dry and rainy). The results showed that the Doce River mouth seems to divide the microbial communities from the southern and northern stations into two groups. The plume of sediments from the Doce River seems to be impacting the marine microbiome even at the furthest sampling stations. Bacterial (Anaerolineaceae, Thermodesulfovibrionia and Rhodopirellula) and Archaeal (Bathyarchaeia and Woesearchaeia) taxa, found in high abundance in the sediment of the Doce River mouth, have been previously described in high abundance in heavy metal contaminated sediments, including the Doce River itself and in mine tailing sediments. Cyanobium, found in great abundance in the water samples from the Doce River mouth, was also reported as the most abundant in the water of the Doce River after the Fundão Dam failure. Overall, the farther from the Doce River mouth the sample was, the lower the relative abundances of these taxa were. These results provide strong evidence that the sediment plume released by the Fundão Dam failure is probably impacting the marine microbiome of nearby coastal areas, even three years after the dam failure.


Assuntos
Microbiota , Poluentes Químicos da Água , Brasil , RNA Ribossômico 16S/genética , Rios , Poluentes Químicos da Água/análise
13.
Cell Rep ; 37(4): 109892, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34672947

RESUMO

The main viral protease (3CLpro) is indispensable for SARS-CoV-2 replication. We delineate the human protein substrate landscape of 3CLpro by TAILS substrate-targeted N-terminomics. We identify more than 100 substrates in human lung and kidney cells supported by analyses of SARS-CoV-2-infected cells. Enzyme kinetics and molecular docking simulations of 3CLpro engaging substrates reveal how noncanonical cleavage sites, which diverge from SARS-CoV, guide substrate specificity. Cleaving the interactors of essential effector proteins, effectively stranding them from their binding partners, amplifies the consequences of proteolysis. We show that 3CLpro targets the Hippo pathway, including inactivation of MAP4K5, and key effectors of transcription, mRNA processing, and translation. We demonstrate that Spike glycoprotein directly binds galectin-8, with galectin-8 cleavage disengaging CALCOCO2/NDP52 to decouple antiviral-autophagy. Indeed, in post-mortem COVID-19 lung samples, NDP52 rarely colocalizes with galectin-8, unlike in healthy lungs. The 3CLpro substrate degradome establishes a foundational substrate atlas to accelerate exploration of SARS-CoV-2 pathology and drug design.


Assuntos
COVID-19 , Proteases 3C de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Humanos , Especificidade por Substrato
14.
Bioorg Med Chem ; 48: 116418, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34563877

RESUMO

Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling pathway and has been validated as a therapeutic target for type 2 diabetes. A wide variety of scaffolds have been included in the structure of PTP1B inhibitors, one of them is the benzimidazole nucleus. Here, we report the design and synthesis of a new series of di- and tri- substituted benzimidazole derivatives including their kinetic and structural characterization as PTP1B inhibitors and hypoglycemic activity. Results show that compounds 43, 44, 45, and 46 are complete mixed type inhibitors with a Ki of 12.6 µM for the most potent (46). SAR type analysis indicates that a chloro substituent at position 6(5), a ß-naphthyloxy at position 5(6), and a p-benzoic acid attached to the linker 2-thioacetamido at position 2 of the benzimidazole nucleus, was the best combination for PTP1B inhibition and hypoglycemic activity. In addition, molecular dynamics studies suggest that these compounds could be potential selective inhibitors from other PTPs such as its closest homologous TCPTP, SHP-1, SHP-2 and CDC25B. Therefore, the compounds reported here are good hits that provide structural, kinetic, and biological information that can be used to develop novel and selective PTP1B inhibitors based on benzimidazole scaffold.


Assuntos
Benzimidazóis/farmacologia , Glicemia/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Animais , Benzimidazóis/síntese química , Benzimidazóis/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Teste de Tolerância a Glucose , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Ratos , Ratos Wistar , Relação Estrutura-Atividade
15.
Mol Nutr Food Res ; 65(19): e2100374, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390604

RESUMO

INTRODUCTION: Resistant starch type-2 (RS2) can mitigate inflammation and oxidative stress in hemodialysis (HD) patients. However, there is still a lack of knowledge on the impact of the RS2 on the gut microbiota community in these patients. Thus, this study aims to evaluate the effects of enriched RS2 cookies on the gut microbiome in HD patients. METHODS AND RESULTS: This comprises a randomized, double-blind, placebo-controlled trial of age-, sex-, and BMI-matched patients and controls. The RS2 group receives enriched RS2 cookies (16 g d-1 of Hi-Maize 260, Ingredion) for 4 weeks, while the placebo group received cookies made with manioc flour. Fecal microbiota composition is evaluated by the 16S ribosomal RNA gene. Analysis of the microbiota reveals that Pielou's evenness is significantly decreased after RS2 supplementation. Notably, it is observed that RS2 intervention upregulates significantly 8 Amplicon Sequencing Variants (ASV's), including Roseburia and Ruminococcus gauvreauii, which are short-chain fatty acids (SCFA) producers. Furthermore, it is associated with the downregulation of 11 ASVs, such as the pro-inflammatory Dialister. CONCLUSIONS: RS2 intervention for 4 weeks in HD patients effectively alters SCFA producers in the gut microbiota, suggesting that it could be a good nutritional strategy for patients with chronic kidney disease (CKD) on HD.


Assuntos
Microbioma Gastrointestinal , Diálise Renal , Insuficiência Renal Crônica/microbiologia , Amido Resistente , Adulto , Idoso , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Placebos , Insuficiência Renal Crônica/terapia , Resultado do Tratamento
16.
J Inorg Biochem ; 224: 111560, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34399231

RESUMO

Currently, acetylcholinesterase (AChE) inhibitors are the only anti-Alzheimer drugs commercially available. Despite their wide use those drugs are all dose dependent and their effect last for no longer than two years, with several side effects. The search of novel acetylcholinesterase (AChE) inhibitors remains as the main scientific route. Here we describe the synthesis, characterization, biological activity and an NMR binding-target study of a novel cis-[Ru(Bpy)2(EtPy)2]2+, (RuEtPy), Bpy = 2,2'-bipyridine and EtPy = 4,2-Ethylamino-pyridine) as a potential AChE inhibitor. The classic Ellman's colorimetric assay suggests that the RuEtPy exhibits a high inhibitory activity, following a competitive mechanism, with a remarkable low inhibition constant (Ki ≈ 16.8 µM), together with a IC50 = 39 µM. Hence, we have studied the spatial interactions for this novel candidate towards the human acetylcholinesterase (hAChE) using saturation transfer difference (STD)-NMR, in order to describe the mechanism of the interaction. NMR binding-target results shows that the 4,2-Ethylamino-Pyridine group is spatially closer to hAChE surface chemical arrangement than 2,2' bipyridine counterpart, exerting an efficient intermolecular interaction, with a low dissociation constant (KD ≈ 55 µM), probing that 4,2-Ethylamino-pyridine motif plays a key role in the inhibitory action.


Assuntos
Inibidores da Colinesterase/química , Complexos de Coordenação/química , Piridinas/química , Rutênio/química , Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Humanos , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular
17.
Microorganisms ; 9(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809442

RESUMO

The polar regions have relatively low richness and diversity of plants and animals, and the basis of the entire ecological chain is supported by microbial diversity. In these regions, understanding the microbial response against environmental factors and anthropogenic disturbances is essential to understand patterns better, prevent isolated events, and apply biotechnology strategies. The Antarctic continent has been increasingly affected by anthropogenic contamination, and its constant temperature fluctuations limit the application of clean recovery strategies, such as bioremediation. We evaluated the bacterial response in oil-contaminated soil through a nutrient-amended microcosm experiment using two temperature regimes: (i) 4 °C and (ii) a freeze-thaw cycle (FTC) alternating between -20 and 4 °C. Bacterial taxa, such as Myxococcales, Chitinophagaceae, and Acidimicrobiales, were strongly related to the FTC. Rhodococcus was positively related to contaminated soils and further stimulated under FTC conditions. Additionally, the nutrient-amended treatment under the FTC regime enhanced bacterial groups with known biodegradation potential and was efficient in removing hydrocarbons of diesel oil. The experimental design, rates of bacterial succession, and level of hydrocarbon transformation can be considered as a baseline for further studies aimed at improving bioremediation strategies in environments affected by FTC regimes.

18.
Bioorg Med Chem ; 28(15): 115597, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32631567

RESUMO

Cathepsin K (CatK) is a cysteine protease known for its potent collagenolytic activity, being recognized as an important target to the development of therapies for the treatment of bone disorders. Epoxypeptidomimetics have been reported as potent inhibitors of cathepsins, thus in this work we present a green synthesis of new peptidomimetics by using a one-pot asymmetric epoxidation/Ugi multicomponent reaction. The compounds were evaluated against CatK showing selectivity when compared with cathepsin L, with an inhibition profile in the low micromolar IC50 range. Investigation of the mechanism of action carried out for compounds LSPN428 and LSPN694 suggested a mixed inhibition mode and docking studies allowed a better understanding about interactions of inhibitors with the enzyme.


Assuntos
Catepsina K/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Compostos de Epóxi/química , Peptidomiméticos/química , Domínio Catalítico , Catepsina K/química , Catepsina K/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Compostos de Epóxi/síntese química , Compostos de Epóxi/metabolismo , Química Verde , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
19.
ACS Omega ; 5(7): 3504-3512, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118165

RESUMO

The beneficial effect of polyphenols and magnesium(II) against oxidative stress motivated our research group to explore the antioxidant activity of phenMgIso, an aqueous soluble magnesium(II) complex containing 1,10-phenanthroline (phen) and isovanillic acid (Iso) as ligands. Combined electrospray ionization-mass spectrometry and DOSY-NMR techniques identified two complexes in methanolic solution: hexacoordinated [Mg(phen)2(Iso)]+ and tetracoordinated [Mg(phen)(Iso)]+. The cyclic voltammogram of phenMgIso in the anodic region showed a cyclic process that interrupts the isovanillic acid degradation, probably by stabilization of the corresponding phenoxyl radical via complexation with Mg(II), which is interesting for antioxidant applications. phenMgIso competes with 2,2,6,6-tetramethylpiperidine by 1O2 with IC50(1O2) = 15 µg m-1 and with nitrotetrazolium blue chloride by superoxide ions (IC50(O2 •-) = 3.6 µg mL-1). Exposure of both zebrafish (2 mg L-1) and wistar male rats (3 mg kg-1 day-1 dose for 21 days) to phenMgIso does not cause mortality or visual changes compared with the respective control groups, thus phenMgIso could be considered safe under the conditions of this study. Moreover, no significant changes in comparison to both control groups were observed in the biochemical parameters on the brain-acetylcholinesterase activity, digestive tract enzyme catalase, and glutathione-S-transferase. Conversely, the performance of superoxide dismutase activity in wistar male rats increased in the presence of a complex, resulting in enhanced capacity of rats for superoxide radical enzymatic scavenging. The synergistic action of phenMgIso may be explained by the strong electrostatic interaction between Mg(II) and the O,O(phenolate) group, which makes the Iso ligand easier to oxidize and deprotonate, generating a cyclic stable species under oxidative conditions.

20.
Anal Chem ; 90(10): 6043-6050, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29565564

RESUMO

Cross-linking/Mass spectrometry (XLMS) is a consolidated technique for structural characterization of proteins and protein complexes. Despite its success, the cross-linking chemistry currently used is mostly based on N-hydroxysuccinimide (NHS) esters, which react primarily with lysine residues. One way to expand the current applicability of XLMS into several new areas is to increase the number of cross-links obtainable for a target protein. We introduce a multiplex chemistry (denoted XPlex) that targets Asp, Glu, Lys, and Ser residues. XPlex can generate significantly more cross-links with reactions occurring at lower temperatures and enables targeting proteins that are not possible with NHS ester-based cross-linkers. We demonstrate the effectiveness of our approach in model proteins as well as a target Lys-poor protein, SalBIII. Identification of XPlex spectra requires a search engine capable of simultaneously considering multiple cross-linkers on the same run; to achieve this, we updated the SIM-XL search algorithm with a search mode tailored toward XPlex. In summary, we present a complete chemistry/computational solution for significantly increasing the number of possible distance constraints by mass spectrometry experiments, and thus, we are convinced that XPlex poses as a real complementary approach for structural proteomics studies.


Assuntos
Ácido Aspártico/análise , Biologia Computacional , Reagentes de Ligações Cruzadas/química , Ácido Glutâmico/análise , Lisina/análise , Serina/análise , Algoritmos , Ésteres/química , Espectrometria de Massas , Proteínas/química , Succinimidas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA