Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 420(1): 136-147, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27717645

RESUMO

The differentiated cell identities and structure of fully formed organs are generally stable after their development. In contrast, we report here that development of the C. elegans proximal somatic gonad (hermaphrodite uterus and spermathecae, and male vas deferens) can be redirected into intestine-like organs by brief expression of the ELT-7 GATA transcription factor. This process converts one developing organ into another and can hence be considered "transorganogenesis." We show that, following pulsed ELT-7 expression, cells of the uterus activate and maintain intestine-specific gene expression and are transformed at the ultrastructural level to form an epithelial tube resembling the normal intestine formed during embryogenesis. Ubiquitous ELT-7 expression activates intestinal markers in many different cell types but only cells in the somatic gonad and pharynx appear to become fully reprogrammed. We found that ectopic expression of other endoderm-promoting transcription factors, but not muscle- or ectoderm- promoting transcription factors, redirects the fate of these organs, suggesting that pharyngeal and somatic gonad cells are specifically competent to adopt intestine identity. Although the intestine, pharynx, and somatic gonad are derived from distant cell lineages, they all express the PHA-4/FoxA transcription factor. While we found that post-embryonic PHA-4 is not necessary for pharynx or uterus reprogramming and PHA-4 is not sufficient in combination with ELT-7 to induce reprogramming in other cells types, knock down of PHA-4 during embryogenesis, which abolishes normal pharynx differentiation, prevents pharyngeal precursors from being reprogrammed into intestine. These results suggest that differentiated cell identity determines susceptibility to transdifferentiation and highlight the importance of cellular context in controlling competency for reprogramming.


Assuntos
Caenorhabditis elegans/citologia , Transdiferenciação Celular , Organogênese , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proliferação de Células , Reprogramação Celular , Embrião não Mamífero/citologia , Endoderma/metabolismo , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/citologia , Imageamento Tridimensional , Intestinos/citologia , Masculino , Músculos/citologia , Faringe/citologia , Fatores de Tempo
2.
PLoS Genet ; 9(6): e1003618, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23825972

RESUMO

Electrical synaptic transmission through gap junctions is a vital mode of intercellular communication in the nervous system. The mechanism by which reciprocal target cells find each other during the formation of gap junctions, however, is poorly understood. Here we show that gap junctions are formed between BDU interneurons and PLM mechanoreceptors in C. elegans and the connectivity of BDU with PLM is influenced by Wnt signaling. We further identified two PAS-bHLH family transcription factors, AHA-1 and AHR-1, which function cell-autonomously within BDU and PLM to facilitate the target identification process. aha-1 and ahr-1 act genetically upstream of cam-1. CAM-1, a membrane-bound receptor tyrosine kinase, is present on both BDU and PLM cells and likely serves as a Wnt antagonist. By binding to a cis-regulatory element in the cam-1 promoter, AHA-1 enhances cam-1 transcription. Our study reveals a Wnt-dependent fine-tuning mechanism that is crucial for mutual target cell identification during the formation of gap junction connections.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores de Hidrocarboneto Arílico/genética , Transmissão Sináptica/genética , Via de Sinalização Wnt/genética , Animais , Caenorhabditis elegans/fisiologia , Comunicação Celular/genética , Comunicação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Sinapses Elétricas/genética , Sinapses Elétricas/fisiologia , Junções Comunicantes/genética , Junções Comunicantes/fisiologia , Interneurônios/fisiologia , Mecanorreceptores/fisiologia , Regiões Promotoras Genéticas , Transmissão Sináptica/fisiologia
3.
J Neurosci ; 32(26): 8778-90, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22745480

RESUMO

Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.


Assuntos
Envelhecimento/patologia , Sistema Nervoso/citologia , Neuritos/fisiologia , Neurônios/citologia , Sinapses/patologia , Tato/fisiologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Mutação/genética , Neuritos/ultraestrutura , Neurônios/classificação , Neurônios/ultraestrutura , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Sinapses/ultraestrutura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Mol Cell Neurosci ; 36(4): 462-71, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17884558

RESUMO

In vertebrates, spinal commissural axons project along a transverse path toward and across the floor plate (FP). Post-crossing commissural axons alter their responsiveness to FP-associated guidance cues and turn to project longitudinally in a fasciculated manner prior to extending away from the midline. The upregulation of the neural cell adhesion molecule L1 on crossed commissural axon segments has been proposed to facilitate pathfinding on the contralateral side of the FP. To explore this possibility in vivo, we used Math1 regulatory sequences to target L1 to commissural axons before they cross the ventral midline. L1 mis-expression did not alter the distribution of commissural axon-associated markers or the ventral extension of commissural axons toward the midline. However, commissural axons often stalled or inappropriately projected into the longitudinal plane at the ipsilateral FP margin. These observations suggest that L1-mediated pathfinding decisions are normally delayed until axons have crossed the ventral midline (VM).


Assuntos
Diferenciação Celular/fisiologia , Cones de Crescimento/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Vias Neurais/embriologia , Vias Neurais/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sinais (Psicologia) , Lateralidade Funcional/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Marcação de Genes/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cones de Crescimento/ultraestrutura , Camundongos , Camundongos Transgênicos , Molécula L1 de Adesão de Célula Nervosa/genética , Vias Neurais/citologia , Medula Espinal/citologia , Regulação para Cima/fisiologia , Proteínas tau/genética , Proteínas tau/metabolismo
5.
J Comp Neurol ; 497(5): 734-50, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16786562

RESUMO

Contact-dependent interactions between EphB receptors and ephrin-B ligands mediate a variety of cell-cell communication events in the developing and mature central nervous system (CNS). These predominantly repulsive interactions occur at the interface between what are considered to be mutually exclusive EphB and ephrin-B expression domains. We previously used receptor and ligand affinity probes to show that ephrin-B ligands are expressed in the floor plate and within a dorsal region of the embryonic mouse spinal cord, while EphB receptors are present on decussated segments of commissural axons that navigate between these ephrin-B domains. Here we present the generation and characterization of two new monoclonal antibodies, mAb EfB1-3, which recognizes EphB1, EphB2, and EphB3, and mAb efrnB1, which is specific for ephrin-B1. We use these reagents and polyclonal antibodies specific for EphB1, EphB2, EphB3, or ephrin-B1 to describe the spatiotemporal expression patterns of EphB receptors and ephrin-B1 in the vertebrate spinal cord. Consistent with affinity probe binding, we show that EphB1, EphB2, and EphB3 are each preferentially expressed on decussated segments of commissural axons in vivo and in vitro, and that ephrin-B1 is expressed in a dorsal domain of the spinal cord that includes the roof plate. In contrast to affinity probe binding profiles, we show here that EphB1, EphB2, and EphB3 are present on the ventral commissure, and that EphB1 and EphB3 are expressed on axons that compose the dorsal funiculus. In addition, we unexpectedly find that mesenchymal cells, which surround the spinal cord and dorsal root ganglion, express ephrin-B1.


Assuntos
Axônios/metabolismo , Efrina-B1/metabolismo , Receptores da Família Eph/metabolismo , Medula Espinal/metabolismo , Animais , Embrião de Galinha , Cricetinae , Efrina-B3/metabolismo , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Receptor EphB2/metabolismo , Medula Espinal/citologia , Medula Espinal/embriologia , Distribuição Tecidual , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA