Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(34): 12869-12878, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37586073

RESUMO

Barite (BaSO4) precipitation is one of the most ubiquitous examples of secondary sulfate mineral scaling in shale oil and gas reservoirs. Often, a suite of chemical additives is used during fracturing operations to inhibit the accumulation of mineral scales, though their efficacy is widely varied and poorly understood. This study combines experimental data and multi-component numerical reactive transport modeling to offer a more comprehensive understanding of the geochemical behavior of barite accumulation in shale matrices under conditions typical of fracturing operations. A variety of additives and conditions are individually tested in batch reactor experiments to identify the factors controlling barite precipitation. Our experimental results demonstrate a pH dependence in the rate of barite precipitation, which we use to develop a predictive model including a pH-dependent term that satisfactorily reproduces our observations. This model is then extended to consider the behavior of three major shale samples of highly variable mineralogy (Eagle Ford, Marcellus, and Barnett). This data-validated model offers a reliable tool to predict and ultimately mitigate against secondary mineral accumulation in unconventional shale reservoirs.


Assuntos
Sulfato de Bário , Campos de Petróleo e Gás , Sulfatos , Minerais
2.
Chem Rev ; 122(9): 9198-9263, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404590

RESUMO

Hydraulic fracturing of unconventional oil/gas shales has changed the energy landscape of the U.S. Recovery of hydrocarbons from tight, hydraulically fractured shales is a highly inefficient process, with estimated recoveries of <25% for natural gas and <5% for oil. This review focuses on the complex chemical interactions of additives in hydraulic fracturing fluid (HFF) with minerals and organic matter in oil/gas shales. These interactions are intended to increase hydrocarbon recovery by increasing porosities and permeabilities of tight shales. However, fluid-shale interactions result in the dissolution of shale minerals and the release and transport of chemical components. They also result in mineral precipitation in the shale matrix, which can reduce permeability, porosity, and hydrocarbon recovery. Competition between mineral dissolution and mineral precipitation processes influences the amounts of oil and gas recovered. We review the temporal/spatial origins and distribution of unconventional oil/gas shales from mudstones and shales, followed by discussion of their global and U.S. distributions and compositional differences from different U.S. sedimentary basins. We discuss the major types of chemical additives in HFF with their intended purposes, including drilling muds. Fracture distribution, porosity, permeability, and the identity and molecular-level speciation of minerals and organic matter in oil/gas shales throughout the hydraulic fracturing process are discussed. Also discussed are analysis methods used in characterizing oil/gas shales before and after hydraulic fracturing, including permeametry and porosimetry measurements, X-ray diffraction/Rietveld refinement, X-ray computed tomography, scanning/transmission electron microscopy, and laboratory- and synchrotron-based imaging/spectroscopic methods. Reactive transport and spatial scaling are discussed in some detail in order to relate fundamental molecular-scale processes to fluid transport. Our review concludes with a discussion of potential environmental impacts of hydraulic fracturing and important knowledge gaps that must be bridged to achieve improved mechanistic understanding of fluid transport in oil/gas shales.


Assuntos
Fraturamento Hidráulico , Minerais/química , Gás Natural , Campos de Petróleo e Gás , Águas Residuárias/química
3.
Environ Sci Technol ; 56(7): 4336-4344, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297619

RESUMO

Celestite (SrSO4) precipitation is a prevalent example of secondary sulfate mineral scaling issues in hydraulic fracturing systems, particularly in basins where large concentrations of naturally occurring strontium are present. Here, we present a validated and flexible geochemical model capable of predicting celestite formation under such unconventional environments. Simulations were built using CrunchFlow and guided by experimental data derived from batch reactors. These data allowed the constraint of key kinetic and thermodynamic parameters for celestite precipitation under relevant synthetic hydraulic fracturing fluid conditions. Effects of ionic strength, saturation index, and the presence of additives were considered in the combined experimental and modeling construction. This geochemical model was then expanded into a more complex system where interactions between hydraulic fracturing fluids and shale rocks were allowed to occur subject to diffusive transport. We find that the carbonate content of a given shale and the presence of persulfate breaker in the system strongly impact the location and extent of celestite formation. The results of this study provide a novel multicomponent reactive transport model that may be used to guide future experimental design in the pursuit of celestite and other sulfate mineral scale mitigation under extreme conditions typical of hydraulic fracturing in shale formations.


Assuntos
Fraturamento Hidráulico , Minerais/química , Gás Natural , Concentração Osmolar , Estrôncio , Sulfatos
4.
Environ Sci Technol ; 55(3): 1377-1394, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33428391

RESUMO

Hydraulic fracturing of unconventional hydrocarbon resources involves the sequential injection of a high-pressure, particle-laden fluid with varying pH's to make commercial production viable in low permeability rocks. This process both requires and produces extraordinary volumes of water. The water used for hydraulic fracturing is typically fresh, whereas "flowback" water is typically saline with a variety of additives which complicate safe disposal. As production operations continue to expand, there is an increasing interest in treating and reusing this high-salinity produced water for further fracturing. Here we review the relevant transport and geochemical properties of shales, and critically analyze the impact of water chemistry (including produced water) on these properties. We discuss five major geochemical mechanisms that are prominently involved in the temporal and spatial evolution of fractures during the stimulation and production phase: shale softening, mineral dissolution, mineral precipitation, fines migration, and wettability alteration. A higher salinity fluid creates both benefits and complications in controlling these mechanisms. For example, higher salinity fluid inhibits clay dispersion, but simultaneously requires more additives to achieve appropriate viscosity for proppant emplacement. In total this review highlights the nuances of enhanced hydrogeochemical shale stimulation in relation to the choice of fracturing fluid chemistry.


Assuntos
Fraturamento Hidráulico , Minerais , Gás Natural , Campos de Petróleo e Gás , Águas Residuárias , Água
5.
Environ Sci Technol ; 54(12): 7320-7329, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32401022

RESUMO

Uranium and other radionuclides are prominent in many unconventional oil/gas shales and is a potential contaminant in flowback/produced waters due to the large volumes/types of chemicals injected into the subsurface during stimulation. To understand the stability of U before and after stimulation, a geochemical study of U speciation was carried out on three shales (Marcellus, Green River, and Barnett). Two types of samples for each shale were subjected to sequential chemical extractions: unreacted and shale-reacted with a synthetic hydraulic fracture fluid. A significant proportion of the total U (20-57%) was released from these three shales after reaction with fracture fluid, indicating that U is readily leachable. The total U released exceeds labile water-soluble and exchangeable fractions in unreacted samples, indicating that fluids leach more recalcitrant phases in the shale. Radiographic analysis of unreacted Marcellus shale thin sections shows U associated with detrital quartz and the clay matrix in the shale. Detrital zircon and TiO2 identified by an electron microprobe could account for the hot spots. This study shows that significant proportions of U in three shales are mobile upon stimulation. In addition, the extent of mobilization of U depends on the U species in these rocks.


Assuntos
Fraturamento Hidráulico , Urânio , Minerais , Gás Natural , Campos de Petróleo e Gás , Urânio/análise , Águas Residuárias
6.
J Air Waste Manag Assoc ; 68(1): 39-53, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28829689

RESUMO

One of the biggest environmental concerns caused by coal-fired power plants is the emission of mercury (Hg), which is toxic metal. To control the emission of Hg from coal-derived flue gas, it is important to understand the behavior and speciation of Hg as well as the interaction between Hg and solid materials in the flue gas stream. In this study, atomic-scale theoretical investigations using density functional theory (DFT) were carried out in conjunction with laboratory-scale experimental studies to investigate the adsorption behavior of Hg on hematite (α-Fe2O3). According to the DFT simulation, the adsorption energy calculation proposes that Hg physisorbs to the α-Fe2O3(0001) surface with an adsorption energy of -0.278 eV, and the subsequent Bader charge analysis confirms that Hg is slightly oxidized. In addition, Cl introduced to the Hg-adsorbed surface strengthens the Hg stability on the α-Fe2O3(0001) surface, as evidenced by a shortened Hg-surface equilibrium distance. The projected density of states (PDOS) analysis also suggests that Cl enhances the chemical bonding between the surface and the adsorbate, thereby increasing the adsorption strength. In summary, α-Fe2O3 has the ability to adsorb and oxidize Hg, and this reactivity is enhanced in the presence of Cl. For the laboratory-scale experiments, three types of α-Fe2O3 nanoparticles were prepared using the precursors Fe(NO3)3, Fe(ClO4)3, and FeCl3, respectively. The particle shapes varied from diamond to irregular stepped and subrounded, and particle size ranged from 20 to 500 nm depending on the precursor used. The nanoparticles had the highest surface area (84.5 m2/g) due to their highly stepped surface morphology. Packed-bed reactor Hg exposure experiments resulted in this nanoparticles adsorbing more than 300 µg Hg/g. The Hg LIII-edge extended X-ray absorption fine structure spectroscopy also indicated that HgCl2 physisorbed onto the α-Fe2O3 nanoparticles. IMPLICATIONS: Atomic-scale theoretical simulations proposes that Hg physisorbs to the α-Fe2O3(0001) surface with an adsorption energy of -0.278 eV, and the subsequent Bader charge analysis confirms that Hg is slightly oxidized. In addition, Cl introduced to the Hg-adsorbed surface strengthens the Hg stability on the α-Fe2O3(0001) surface, as evidenced by a shortened Hg-surface equilibrium distance. The PDOS analysis also suggests that Cl enhances the chemical bonding between the surface and the adsorbate, thereby increasing the adsorption strength. Following laboratory-scale experiment of Hg sorption also shows that HgCl2 physisorbs onto α-Fe2O3 nanoparticles which have highly stepped structure.


Assuntos
Poluentes Ambientais/química , Compostos Férricos/química , Mercúrio/química , Centrais Elétricas , Adsorção , Poluentes Ambientais/análise , Poluição Ambiental/prevenção & controle , Mercúrio/análise , Modelos Teóricos , Oxirredução , Tamanho da Partícula
7.
Environ Sci Technol ; 49(2): 767-76, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25489982

RESUMO

The goal of this study was to investigate the Hg stable isotope signatures of sediments in San Carlos Creek downstream of the former Hg mine New Idria, CA, USA and to relate the results to previously studied Hg isotope signatures of unroasted ore waste and calcine materials in the mining area. New Idria unroasted ore waste was reported to have a narrow δ(202)Hg range (−0.09 to 0.16‰), while roasted calcine materials exhibited a very large variability in δ(202)Hg (−5.96 to 14.5‰). In this study, creek sediment samples were collected in the stream bed from two depths (0­10 and 10­20 cm) at 10 locations between the mine adit and 28 km downstream. The sediment samples were size-fractionated into sand, silt, and (if possible) clay fractions as well as hand-picked calcine pebbles. The sediment samples contained highly elevated Hg concentrations (8.2 to 647 µg g(­1)) and displayed relatively narrow mass-dependent fractionation (MDF, δ(202)Hg; ± 0.08‰, 2SD) ranges (−0.58 to 0.24‰) and little to no mass-independent fractionation (MIF, Δ(199)Hg; ± 0.04‰, 2SD) (0.00 to 0.10‰), similar to what was observed previously for the unroasted ore waste. However, due to the highly variable and overlapping δ(202)Hg signatures of the calcines, they could not be ruled out as source of Hg to the creek sediments. Overall, our results suggest that analyzing creek sediments downstream of former Hg mines can provide a more reliable Hg isotope source signature for tracing studies at larger spatial scales, than analyzing the isotopically highly heterogeneous tailing piles typically found at former mining sites. Creek sediments carry an integrated isotope signature of Hg transported away from the mine with runoff into the creek, eventually affecting ecosystems downstream.


Assuntos
Água Doce/química , Sedimentos Geológicos/química , Mercúrio/análise , Mineração , Poluentes Químicos da Água/análise , California , Fracionamento Químico , Ecossistema , Monitoramento Ambiental/métodos , Isótopos de Mercúrio
8.
Environ Sci Technol ; 47(12): 6137-45, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23662941

RESUMO

Mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes provides a new tool for tracing Hg in contaminated environments such as mining sites, which represent major point sources of Hg pollution into surrounding ecosystems. Here, we present Hg isotope ratios of unroasted ore waste, calcine (roasted ore), and poplar leaves collected at a closed Hg mine (New Idria, CA, U.S.A.). Unroasted ore waste was isotopically uniform with δ(202)Hg values from -0.09 to 0.16‰ (± 0.10‰, 2 SD), close to the estimated initial composition of the HgS ore (-0.26‰). In contrast, calcine samples exhibited variable δ(202)Hg values ranging from -1.91‰ to +2.10‰. Small MIF signatures in the calcine were consistent with nuclear volume fractionation of Hg isotopes during or after the roasting process. The poplar leaves exhibited negative MDF (-3.18 to -1.22‰) and small positive MIF values (Δ(199)Hg of 0.02 to 0.21‰). Sequential extractions combined with Hg isotope analysis revealed higher δ(202)Hg values for the more soluble Hg pools in calcines compared with residual HgS phases. Our data provide novel insights into possible in situ transformations of Hg phases and suggest that isotopically heavy secondary Hg phases were formed in the calcine, which will influence the isotope composition of Hg leached from the site.


Assuntos
Isótopos de Mercúrio/análise , Mercúrio/análise , Mineração , Estados Unidos
9.
Environ Sci Technol ; 47(11): 5738-45, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23641814

RESUMO

Pristine silver nanoparticles (AgNPs) are not chemically stable in the environment and react strongly with inorganic ligands such as sulfide and chloride once the silver is oxidized. Understanding the environmental transformations of AgNPs in the presence of specific inorganic ligands is crucial to determining their fate and toxicity in the environment. Chloride (Cl(-)) is a ubiquitous ligand with a strong affinity for oxidized silver and is often present in natural waters and in bacterial growth media. Though chloride can strongly affect toxicity results for AgNPs, their interaction is rarely considered and is challenging to study because of the numerous soluble and solid Ag-Cl species that can form depending on the Cl/Ag ratio. Consequently, little is known about the stability and dissolution kinetics of AgNPs in the presence of chloride ions. Our study focuses on the dissolution behavior of AgNPs in chloride-containing systems and also investigates the effect of chloride on the growth inhibition of E.coli (ATCC strain 33876) caused by Ag toxicity. Our results suggest that the kinetics of dissolution are strongly dependent on the Cl/Ag ratio and can be interpreted using the thermodynamically expected speciation of Ag in the presence of chloride. We also show that the toxicity of AgNPs to E.coli at various Cl(-) concentrations is governed by the amount of dissolved AgCl(x)((x-1)-) species suggesting an ion effect rather than a nanoparticle effect.


Assuntos
Cloretos/química , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Relação Dose-Resposta a Droga , Escherichia coli/crescimento & desenvolvimento , Prata/química , Poluentes Químicos da Água/química
10.
Environ Sci Technol ; 45(2): 412-7, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21121657

RESUMO

Mercury in the environment is of prime concern to both ecosystem and human health. Determination of the molecular-level speciation of Hg in soils and mine wastes is important for understanding its sequestration, mobility, and availability for methylation. Extended X-ray absorption fine structure (EXAFS) spectroscopy carried out under ambient P-T conditions has been used in a number of past studies to determine Hg speciation in complex mine wastes and associated soils. However, this approach cannot detect elemental (liquid) mercury in Hg-polluted soils and sediments due to the significant structural disorder of liquid Hg at ambient-temperature. A new sample preparation protocol involving slow cooling through the crystallization temperature of Hg(0) (234 K) results in its transformation to crystalline α-Hg(0). The presence and proportion of Hg(0), relative to other crystalline Hg-bearing phases, in samples prepared in this way can be quantified by low-temperature (77 K) EXAFS spectroscopy. Using this approach, we have determined the relative concentrations of liquid Hg(0) in Hg mine wastes from several sites in the California Coast Range and have found that they correlate well with measured fluxes of gaseous Hg released during light and dark exposure of the same samples, with higher evasion ratios from samples containing higher concentrations of liquid Hg(0). Two different linear relationships are observed in plots of the ratio of Hg emission under light and dark conditions vs % Hg(0), corresponding to silica-carbonate- and hot springs-type Hg deposits, with the hot springs-type samples exhibiting higher evasion fluxes than silica-carbonate type samples at similar Hg(0) concentrations. Our findings help explain significant differences in Hg evasion data for different mine sites in the California Coast Range.


Assuntos
Monitoramento Ambiental/métodos , Resíduos Industriais/análise , Mercúrio/análise , Mineração , Poluentes do Solo/análise , Atmosfera/química , Sedimentos Geológicos/química , Mercúrio/química , Processos Fotoquímicos , Poluentes do Solo/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA