Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ayurveda Integr Med ; : 100911, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876946

RESUMO

Natural bioactives possess a wide range of chemical structures that can exert a plethora of pharmacological and toxicological actions, resulting in neuroprotection or neurotoxicity. These pharmacodynamic properties can positively or negatively impact human and animal global healthcare. Remarkably, Ayurvedic botanical Cannabis has been used worldwide by different ethnicities and religions for spiritual, commercial, recreational, nutraceutical, cosmeceutical, and medicinal purposes for centuries. Cannabis-based congeners have been approved by the United States of America's (USA) Food & Drug Administration (FDA) and other global law agencies for various therapeutic purposes. Surprisingly, the strict laws associated with possessing cannabis products have been mitigated in multiple states in the USA and across the globe for recreational use. This has consequently led to a radical escalation of exposure to cannabis-related substances of abuse. However, there is a lacuna in the literature on the acute and chronic effects of Cannabis and its congeners on various neuropathologies. Moreover, in the post-COVID era, there has been a drastic increase in the incidence and prevalence of numerous neuropathologies, leading to increased morbidity and mortality. There is an impending necessity for a safe, economically viable, multipotent, natural bioactive to prevent and treat various neuropathologies. The ayurvedic herb, Cannabis is one of the oldest botanicals known to humans and has been widely used. However, the comprehensive effect of Cannabis on various neuropathologies is not well established. Hence, this review presents effects of Cannabis on various neuropathologies.

2.
J Ethnopharmacol ; 284: 114827, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774684

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chandamarutha Chenduram (CC), an Indian traditional Siddha preparation officially recorded in the Siddha formulary of India and its composition are widely used in the Siddha practice of neurological disorders like stroke/paralysis in India. However, the scientific validation and mechanistic evidence is lacking and yet to be elucidated. AIM OF THE STUDY: To establish the scientific evidences and to explore the possible neuroprotective mechanism of CC in cerebral ischemia. MATERIALS AND METHODS: Chemical standardization of the CC was performed using atomic absorption spectroscopy and gravimetric analysis. Acute toxicity study for CC in mice was performed in accordance with OECD 423 guidelines. CC (5 mg/kg) and CC (10 mg/kg) were investigated in bilateral common carotid occlusion (BCCAo) model in mice. After, behavioral assessments, the brain samples were collected and the hippocampus region was micro-dissected for neurotransmitter, neurobiochemicals and inflammatory cytokines estimation. The excitatory amino acid transporter-2 (EAAT-2) expressions was analyzed by RT-PCR to understand the possible molecular mechanism. In addition, hematoxylin and eosin staining of CA1 hippocampal brain region was performed to support the neuroprotective effect of CC in ischemic condition. RESULTS: Chemical standardization analysis showed that CC has acceptable range of mercury (0.82 ppm) and elemental sulphur (11% w/w). Also, other heavy metal limits were found to be less or not detectable. Toxicity study also evidenced the safety profile of CC. CC has significantly reversed the behavioral dysfunctions (p < 0.001) in global ischemic mice. Treatment with CC has attenuated the excitatory neurotransmitter glutamate, lipid peroxide, nitric oxide, cytokines (IL-1ß, TNF-α) (p < 0.001) and increased the antioxidant enzymes (SOD, CAT, GSH) and EAAT-2 expression level (p < 0.001) in ischemic brain. The hematoxylin and eosin staining in CA1 region of hippocampus also evidence the neuroprotective effect exhibited by CC. CONCLUSIONS: Treatment with CC has exhibited dose dependent effect and CC10 has shown significant protective effect in comparison to CC5 in most of the parameters studied. CC prevented further degeneration of neurons in cerebral ischemic mice through ameliorating inflammatory cytokines and oxy-radicals mediated EAAT-2 dysfunction and subsequent excitotoxicity in neurons.


Assuntos
Citocinas/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ayurveda , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Citocinas/genética , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos
3.
Neurochem Int ; 140: 104814, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32758586

RESUMO

Peroxisome proliferator-activated receptor gamma (PPAR-γ) is one of the ligand-activated transcription factors which regulates a number of central events and considered as a promising target for various neurodegenerative disease conditions. Numerous reports implicate that PPAR-γ agonists have shown neuroprotective effects by regulating genes transcription associated with the pathogenesis of neurodegeneration. In regards, this review critically appraises the recent knowledge of PPAR-γ receptors in neuroprotection in order to hypothesize potential neuroprotective mechanism of PPAR-γ agonism in chronic neurological conditions. Of note, the PPAR-γ's interaction dynamics with PPAR-γ coactivator-1α (PGC-1α) has gained significant attention for neuroprotection. Likewise, a plethora of studies suggest that the PPAR-γ pathway can be actuated by the endogenous ligands present in the CNS and thus identification and development of novel agonist for the PPAR-γ receptor holds a vow to prevent neurodegeneration. Together, the critical insights of this review enlighten the translational possibilities of developing novel neuroprotective therapeutics targeting PPAR-γ for various neurodegenerative disease conditions.


Assuntos
Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Neuroproteção/fisiologia , PPAR gama/agonistas , PPAR gama/metabolismo , Animais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/genética , Estresse Oxidativo/fisiologia , PPAR gama/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA