Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 38(5): 605-613, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37807835

RESUMO

Polymethyl methacrylate (PMMA) bone cement is widely used to relieve pain caused by metastatic bone tumors. We previously found that PMMA bone cement containing 15 mass% or more of TiO2 showed good apatite-forming ability, and 25 mass% or more of Fe3O4 generated sufficient heat for hyperthermia under an alternating current (AC) magnetic field. In this study, the cytocompatibility of PMMA bone cement with Fe3O4:TiO2 weight ratios of 25:15 (F25T15-3/2-42) and 30:15 (F30T15-3/2-42) was evaluated using osteoblastic cells (MC3T3-E1). The proliferation and differentiation of MC3T3-E1 cells were suppressed for F25T15-3/2-42 and F30T15-3/2-42 compared to PMMA bone cement without Fe3O4 and TiO2 (F0T0-3/2-42). The release of methyl methacrylate (MMA) monomers from F25T15-3/2-42 and F30T15-3/2-42 at 7 days was about 33 and 50 times higher than that from F0T0-3/2-42, respectively. The remarkable release of MMA monomers from F25T15-3/2-42 and F30T15-3/2-42 may be responsible for the suppressed proliferation and differentiation of MC3T3-E1 cells. The release of MMA monomers was not reduced when the MMA/PMMA weight ratio was decreased from 3/2 to 1/1, however, it was significantly reduced by increasing the content of benzoyl peroxide (BPO) and N, N-dimethyl-p-toluidine (DMPT) to 8 and 4 mass% against MMA, respectively. Proliferation and differentiation of MC3T3-E1 cells on PMMA-type cements containing Fe3O4 and TiO2 with increased BPO and DMPT contents need to be investigated in the future; however, our findings will be useful for designing PMMA cements for the hyperthermic treatment of metastatic bone tumors.


Assuntos
Neoplasias Ósseas , Polimetil Metacrilato , Humanos , Cimentos Ósseos/uso terapêutico , Metilmetacrilato , Diferenciação Celular , Neoplasias Ósseas/terapia , Proliferação de Células , Teste de Materiais
2.
J Colloid Interface Sci ; 608(Pt 2): 1585-1597, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742075

RESUMO

Elucidation of reaction mechanisms in forming nanostructures is relevant to obtain robust and affordable protocols that can lead to materials with enhanced properties and good reproducibility. Here, the formation of magnetic iron oxide monocrystalline nanoflowers in polyol solvents using N-methyldiethanolamine (NMDEA) as co-solvent has been shown to occur through a non-classical crystallization pathway. This pathway involves intermediate mesocrystals that, in addition, can be transformed into large single colloidal nanocrystals. Interestingly, the crossover of a non-classical crystallization pathway to a classical crystallization pathway can be induced by merely changing the NMDEA concentration. The key is the stability of a green rust-like intermediate complex that modulates the nucleation rate and growth of magnetite nanocrystals. The crossover separates two crystallization domains (classical and non-classical) and three basic configurations (mesocrystals, large and small colloidal nanocrystals). The above finding facilitated the synthesis of magnetic materials with different configurations to suit various engineering applications. Consequently, the effect of the single and multicore configurations of magnetic iron oxide on the biomedical (magnetic hyperthermia and enzyme immobilization) and catalytic activity (Fenton-like reactions and photo-Fenton-like processes driven by visible light irradiation) has been experimentally demonstrated.


Assuntos
Aminas , Coloides , Cristalização , Compostos Férricos , Fenômenos Magnéticos , Reprodutibilidade dos Testes
3.
RSC Adv ; 10(44): 26374-26380, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519777

RESUMO

Hyperthermia treatment using appropriate magnetic materials in an alternating magnetic field to generate heat has been recently proposed as a low-invasive cancer treatment method. Magnetite (Fe3O4) nanoparticles are expected to be an appropriate type of magnetic thermal seed for this purpose, and the addition of organic substances during the synthesis process has been studied for controlling particle size and improving biological functions. However, the role of the properties of the organic polymer chosen as the modifier in the physical properties of the thermal seed has not yet been comprehensively revealed. Therefore, this study clarifies these points in terms of the molecular weight and the charge of the functional groups of the added polymers. Excepting polyethyleneimine, the Fe3O4 crystallite size decreased with increasing polymer molecular weight. Neutral polymers did not suppress the Fe3O4 formation regardless of the difference in molecular weight, while suppression of the Fe3O4 formation was observed for low molecular weight anionic polymers and high molecular weight cationic polymers. Samples with a small amount of Fe3O4 or with crystallite size less than 10 nm induced low heat generation under an alternating magnetic field.

4.
J Colloid Interface Sci ; 531: 109-118, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029029

RESUMO

Copper (Cu) nanowires (NWs) were synthesized by the reduction of Cu-chloride complexes using ascorbic acid (AA) as a mild reducing agent, polyvinylpyrrolidone (PVP) as a capping agent, and NaCl as an additive under atmospheric conditions at 80 °C. Surface analyses revealed that both Cl ions and PVP were required for the synthesis of Cu NWs. Together, the Cl ions and PVP capped the Cu (1 0 0) side faces, leading to anisotropic growth of Cu NWs along the [1 1 0] direction. To obtain Cu NWs with high aspect ratios, we evaluated the synthetic mechanism under different reaction conditions. The results indicated that the presence of dissolved oxygen (DO) was the dominant factor affecting aspect ratio of Cu NWs. DO and hydrogen peroxide resulting from the reaction between DO and AA oxidized the surfaces of the growing Cu NWs, preventing further growth. Decreasing the amount of oxides on the Cu NW surfaces and removing DO increased the aspect ratios of the Cu NWs. The results indicated that DO should be removed from the reaction solution to obtain high-aspect-ratio Cu NWs in aqueous solutions containing AA.

5.
PLoS One ; 10(3): e0118156, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25775017

RESUMO

Magnetic responses of superparamagnetic nanoparticles to high-frequency AC magnetic fields with sufficiently large amplitudes are numerically simulated to exactly clarify the phenomena occurring in magnetic particle imaging. When the magnetic anisotropy energy inevitable in actual nanoparticles is taken into account in considering the magnetic potential, larger nanoparticles exhibit a delayed response to alternations of the magnetic fields. This kind of delay is rather remarkable in the lower-amplitude range of the field, where the assistance by the Zeeman energy to thermally activated magnetization reversal is insufficient. In some cases, a sign inversion of the third-order harmonic response was found to occur at some specific amplitude, despite the lack in DC bias magnetic field strength. Considering the attenuation of the AC magnetic field generated in the human body, it is possible that the phases of the signals from nanoparticles deep inside the body and those near the body surface are completely different. This may lead to artifacts in the reconstructed image. Furthermore, when the magnetic/thermal torque-driven rotation of the anisotropic nanoparticles as well as the magnetic anisotropy energy are taken into account, the simulated results show that, once the easy axes are aligned toward the direction of the DC bias magnetic field, it takes time to randomize them at the field-free point. During this relaxation, the third-order harmonic response depends highly upon the history of the magnetic field. This is because non-linearity of the anhysteretic magnetization curve for the superparamagnetic nanoparticles varies with the orientations of the easy axes. This history dependence may also lead to another artifact in magnetic particle imaging, when the scanning of the field-free point is faster than the Brownian relaxations.


Assuntos
Artefatos , Campos Magnéticos , Nanopartículas de Magnetita/química , Modelos Teóricos , Anisotropia , Processamento de Imagem Assistida por Computador
6.
Sci Rep ; 1: 157, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355672

RESUMO

Targeted hyperthermia treatment using magnetic nanoparticles is a promising cancer therapy. However, the mechanisms of heat dissipation in the large alternating magnetic field used during such treatment have not been clarified. In this study, we numerically compared the magnetic loss in rotatable nanoparticles in aqueous media with that of non-rotatable nanoparticles anchored to localised structures. In the former, the relaxation loss in superparamagnetic nanoparticles has a secondary maximum because of slow rotation of the magnetic easy axis of each nanoparticle in the large field in addition to the known primary maximum caused by rapid Néel relaxation. Irradiation of rotatable ferromagnetic nanoparticles with a high-frequency axial field generates structures oriented in a longitudinal or planar direction irrespective of the free energy. Consequently, these dissipative structures significantly affect the conditions for maximum hysteresis loss. These findings shed new light on the design of targeted magnetic hyperthermia treatments.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Humanos , Campos Magnéticos , Nanopartículas de Magnetita/química , Modelos Biológicos , Modelos Teóricos , Neoplasias/terapia
7.
J Aerosol Sci ; 41(3): 257-265, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20228941

RESUMO

Iron oxide nanoparticles of reduced oxidation state, mainly in the form of magnetite, have been synthesized utilizing a new continuous, gas-phase, nonpremixed flame method using hydrocarbon fuels. This method takes advantage of the characteristics of the inverse flame, which is produced by injection of oxidizer into a surrounding flow of fuel. Unlike traditional flame methods, this configuration allows for the iron particle formation to be maintained in a more reducing environment. The effects of flame temperature, oxygen-enrichment and fuel dilution (i.e. the stoichiometric mixture fraction), and fuel composition on particle size, Fe oxidation state, and magnetic properties are evaluated and discussed. The crystallite size, Fe(II) fraction, and saturation magnetization were all found to increase with flame temperature. Flames of methane and ethylene were used, and the use of ethylene resulted in particles containing metallic Fe(0), in addition to magnetite, while no Fe(0) was present in samples synthesized using methane.

8.
Biomed Mater Eng ; 19(2-3): 213-20, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19581716

RESUMO

Nano-sized particles have received much attention in view of their varied application in a wide range of fields. For example, magnetite (Fe(3)O(4)) nanoparticles have been investigated for various medical applications. In this study, we visualized the distribution of administered magnetic nanoparticles in mice using both X-ray scanning analytical microscopy (XSAM) and magnetic resonance imaging (MRI). After administration, the nanoparticles were rapidly dispersed via the blood circulation, and reached the liver, kidney and spleen. Using the XSAM and MRI methods in a complementary fashion, the biodistribution of nano-sized magnetite particles was successfully visualized.


Assuntos
Meios de Contraste/química , Meios de Contraste/farmacocinética , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/farmacocinética , Imageamento por Ressonância Magnética/métodos , Imagem Corporal Total/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microscopia de Fluorescência/métodos , Especificidade de Órgãos , Distribuição Tecidual , Raios X
9.
ACS Nano ; 2(2): 348-56, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19206637

RESUMO

We produced large binder-free multi-walled carbon nanotube (MWNT) blocks from fluorinated MWNTs using thermal heating and a compressing method in vacuo. This technique resulted in the formation of covalent MWNT networks generated by the introduction of sp(3)-hybridized carbon atoms that cross-link between nanotubes upon de-fluorination. The resulting carbon nanotube blocks are lighter than graphite, can be machined and polished, and possess average bending strengths of 102.2 MPa, a bending modulus of 15.4 GPa, and an electrical conductivity of 2.1 x 10(2) S/cm. Although each nanotube exhibits a random structure in these blocks, the mechanical properties are 3 times higher than those obtained for commercial graphite. On the basis of theoretical molecular dynamics simulations, a model is presented for the nanotube interconnecting mechanism upon de-fluorination.


Assuntos
Cristalização/métodos , Eletroquímica/métodos , Flúor/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Reagentes de Ligações Cruzadas/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
10.
J Phys Chem B ; 110(46): 23159-63, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17107159

RESUMO

Multi-walled carbon nanotube (MWCNT) films were prepared by employing a condensation reaction utilizing 1,3-dicyclohexylcarbodiimide (DCC) to cross-link each MWCNT with carboxylic acid and hydroxyl groups. Morphological changes in the resultant MWCNT films were monitored using scanning electron microscopy and showed that the MWCNTs were randomly intertwined in the films. The prepared MWCNT films were 17 mm in diameter and 20 microm in thickness, and the apparent density was 0.59 g/cm(3). Fourier transform-infrared spectroscopy confirmed that each MWCNT modified with carboxylic acid and hydroxyl groups was cross-linked through the ester bond. It was found that the ratio of the number of ester cross-links and carbon atoms of the nanotubes per unit apparent volume (cm(3)) of condensed-MWCNT films was 5.27 x 10(-3) using thermogravimetric analysis (TGA). The tensile strength and Vickers hardness of condensed-MWCNT films achieved an average of 15 and 9.2 MPa, respectively, and were greater than those of free-standing MWCNT films without ester bond.


Assuntos
Dicicloexilcarbodi-Imida/química , Nanotecnologia , Nanotubos de Carbono/química , Reagentes de Ligações Cruzadas/química , Desidratação , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Resistência à Tração , Termogravimetria
11.
Mol Biosyst ; 1(2): 142-5, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16880976

RESUMO

Water-soluble H-CNFs modified with a carboxyl group possessed the ability to induce TNF-alpha, whereas CHAPS-treated H-CNFs possessed significantly greater activity and were also found to activate NF-kappaB reporter activity, to a significantly greater level than H-CNFs; furthermore the functional group modified or coated on the surface of H-CNFs was a significant cytotoxic factor that affected cell activation.


Assuntos
Carbono/química , Nanoestruturas/química , Carbono/farmacologia , Linhagem Celular , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Nanotecnologia , Solubilidade , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo , Água/química
12.
Mol Biosyst ; 1(2): 176-82, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16880981

RESUMO

Carbon nanotubes (CNTs) are single- or multi-cylindrical graphene structures that possess diameters of a few nanometers, while the length can be up to a few micrometers. These could have unusual toxicological properties, in that they share intermediate morphological characteristics of both fibers and nanoparticles. To date, no detailed study has been carried out to determine the effect of length on CNT cytotoxicity. In this paper, we investigated the activation of the human acute monocytic leukemia cell line THP-1 in vitro and the response in subcutaneous tissue in vivo to CNTs of different lengths. We used 220 nm and 825 nm-long CNT samples for testing, referred to as "220-CNTs" and "825-CNTs", respectively. 220-CNTs and 825-CNTs induced human monocytes in vitro, although the activity was significantly lower than that of microbial lipopeptide and lipopolysaccharide, and no activity appeared following variation in the length of CNTs. On the other hand, the degree of inflammatory response in subcutaneous tissue in rats around the 220-CNTs was slight in comparison with that around the 825-CNTs. These results indicated that the degree of inflammation around 825-CNTs was stronger than that around 220-CNTs since macrophages could envelop 220-CNTs more readily than 825-CNTs. However, no severe inflammatory response such as necrosis, degeneration or neutrophil infiltration in vivo was observed around both CNTs examined throughout the experimental period.


Assuntos
Nanotubos de Carbono/química , Animais , Linhagem Celular Tumoral , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Inflamação/etiologia , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Nanotubos de Carbono/toxicidade , Ratos , Ratos Wistar , Espectrofotometria Infravermelho , Tela Subcutânea/patologia , Tela Subcutânea/ultraestrutura , Fator de Necrose Tumoral alfa/metabolismo
13.
Nat Mater ; 3(2): 99-102, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14743211

RESUMO

Nanoparticles under a few nanometres in size have structures and material functions that differ from the bulk because of their distinct geometrical shapes and strong quantum confinement. These qualities could lead to unique device applications. Our mass spectral analysis of CdSe nanoparticles reveals that (CdSe)(33) and (CdSe)(34) are extremely stable: with a simple solution method, they grow in preference to any other chemical compositions to produce macroscopic quantities. First-principles calculations predict that these are puckered (CdSe)(28)-cages, with four- and six-membered rings based on the highly symmetric octahedral analogues of fullerenes, accommodating either (CdSe)(5) or (CdSe)(6) inside to form a three-dimensional network with essentially heteropolar sp(3)-bonding. This is in accordance with our X-ray and optical analyses. We have found similar mass spectra and atomic structures in CdS, CdTe, ZnS and ZnSe, demonstrating that mass-specified and macroscopically produced nanoparticles, which have been practically limited so far to elemental carbon, can now be extended to a vast variety of compound systems.


Assuntos
Compostos de Cádmio/química , Técnicas de Química Analítica/métodos , Nanotecnologia , Compostos de Selênio/química , Cinética , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA