Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38775743

RESUMO

Small molecule inhibitors (SMIs) have been gaining attention in the field of area-selective atomic layer deposition (ALD) because they can be applied in the vapor-phase. A major challenge for SMIs is that vapor-phase application leads to a disordered inhibitor layer with lower coverage as compared to self-assembled monolayers, SAMs. A lower coverage of SMIs makes achieving high selectivity for area-selective ALD more challenging. To overcome this challenge, mechanistic understanding is required for the formation of SMI layers and the resulting precursor blocking. In this study, reflection adsorption infrared spectroscopy measurements are used to investigate the performance of aniline as an SMI. Our results show that aniline undergoes catalytic surface reactions, such as hydrogenolysis, on a Ru non-growth area at substrate temperatures above 250 °C. At these temperatures, a greatly improved selectivity is observed for area-selective TaN ALD using aniline as an inhibitor. The results suggest that catalytic surface reactions of the SMI play an important role in improving precursor blocking, likely through the formation of a more carbon-rich inhibitor layer. More prominently, catalytic surface reactions can provide a new strategy for forming inhibitor layers that are otherwise very challenging or impossible to form directly through vapor-phase application.

2.
Nano Lett ; 15(6): 3845-50, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25950850

RESUMO

Commonly known in macroscale mechanics, buckling phenomena are now also encountered in the nanoscale world as revealed in today's cutting-edge fabrication of microelectronics. The description of nanoscale buckling requires precise dimensional and elastic moduli measurements, as well as a thorough understanding of the relationships between stresses in the system and the ensuing morphologies. Here, we analyze quantitatively the buckling mechanics of organosilicate fins that are capped with hard masks in the process of lithographic formation of deep interconnects. We propose an analytical model that quantitatively describes the morphologies of the buckled fins generated by residual stresses in the hard mask. Using measurements of mechanical properties and geometric characteristics, we have verified the predictions of the analytical model for structures with various degrees of buckling, thus putting forth a framework for guiding the design of future nanoscale interconnect architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA