Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37623121

RESUMO

Soil fertilizers have the potential to significantly increase crop yields and improve plant health by providing essential nutrients to the soil. The use of fertilizers can also help to improve soil structure and fertility, leading to more resilient and sustainable agricultural systems. However, overuse or improper use of fertilizers can lead to soil degradation, which can reduce soil fertility, decrease crop yields, and damage ecosystems. Thus, several attempts have been made to overcome the issues related to the drawbacks of fertilizers, including the development of an advanced fertilizer delivery system. Biopolymer aerogels show promise as an innovative solution to improve the efficiency and effectiveness of soil-fertilizer delivery systems. Further research and development in this area could lead to the widespread adoption of biopolymer aerogels in agriculture, promoting sustainable farming practices and helping to address global food-security challenges. This review discusses for the first time the potential of biopolymer-based aerogels in soil-fertilizer delivery, going through the types of soil fertilizer and the advert health and environmental effects of overuse or misuse of soil fertilizers. Different types of biopolymer-based aerogels were discussed in terms of their potential in fertilizer delivery and, finally, the review addresses the challenges and future directions of biopolymer aerogels in soil-fertilizer delivery.

2.
Sci Rep ; 13(1): 5663, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024543

RESUMO

Identification of protein-protein interactions (PPI) is among the critical problems in the domain of bioinformatics. Previous studies have utilized different AI-based models for PPI classification with advances in artificial intelligence (AI) techniques. The input to these models is the features extracted from different sources of protein information, mainly sequence-derived features. In this work, we present an AI-based PPI identification model utilizing a PPI network and protein sequences. The PPI network is represented as a graph where each node is a protein pair, and an edge is defined between two nodes if there exists a common protein between these nodes. Each node in a graph has a feature vector. In this work, we have used the language model to extract feature vectors directly from protein sequences. The feature vectors for protein in pairs are concatenated and used as a node feature vector of a PPI network graph. Finally, we have used the Graph-BERT model to encode the PPI network graph with sequence-based features and learn the hidden representation of the feature vector for each node. The next step involves feeding the learned representations of nodes to the fully connected layer, the output of which is fed into the softmax layer to classify the protein interactions. To assess the efficacy of the proposed PPI model, we have performed experiments on several PPI datasets. The experimental results demonstrate that the proposed approach surpasses the existing PPI works and designed baselines in classifying PPI.


Assuntos
Inteligência Artificial , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Mapas de Interação de Proteínas , Sequência de Aminoácidos
3.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 3215-3225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37027644

RESUMO

The knowledge of protein-protein interaction (PPI) helps us to understand proteins' functions, the causes and growth of several diseases, and can aid in designing new drugs. The majority of existing PPI research has relied mainly on sequence-based approaches. With the availability of multi-omics datasets (sequence, 3D structure) and advancements in deep learning techniques, it is feasible to develop a deep multi-modal framework that fuses the features learned from different sources of information to predict PPI. In this work, we propose a multi-modal approach utilizing protein sequence and 3D structure. To extract features from the 3D structure of proteins, we use a pre-trained vision transformer model that has been fine-tuned on the structural representation of proteins. The protein sequence is encoded into a feature vector using a pre-trained language model. The feature vectors extracted from the two modalities are fused and then fed to the neural network classifier to predict the protein interactions. To showcase the effectiveness of the proposed methodology, we conduct experiments on two popular PPI datasets, namely, the human dataset and the S. cerevisiae dataset. Our approach outperforms the existing methodologies to predict PPI, including multi-modal approaches. We also evaluate the contributions of each modality by designing uni-modal baselines. We perform experiments with three modalities as well, having gene ontology as the third modality.


Assuntos
Redes Neurais de Computação , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas/química , Sequência de Aminoácidos , Multiômica
4.
Artigo em Inglês | MEDLINE | ID: mdl-35259112

RESUMO

Nowadays, multiple sources of information about proteins are available such as protein sequences, 3D structures, Gene Ontology (GO), etc. Most of the works on protein-protein interaction (PPI) identification had utilized these information about proteins, mainly sequence-based, but individually. The new advances in deep learning techniques allow us to leverage multiple sources/modalities of proteins, which complement each other. Some recent works have shown that multi-modal PPI models perform better than uni-modal approaches. This paper aims to investigate whether the performance of multi-modal PPI models is always consistent or depends on other factors such as dataset distribution, algorithms used to learn features, etc. We have used three modalities for this study: Protein sequence, 3D structure, and GO. Various techniques, including deep learning algorithms, are employed to extract features from multiple sources of proteins. These feature vectors from different modalities are then integrated in several combinations (bi-modal and tri-modal) to predict PPI. To conduct this study, we have used Human and S. cerevisiae PPI datasets. The obtained results demonstrate the potentiality of a multi-modal approach and deep learning techniques in predicting protein interactions. However, the predictive capability of a model for PPI depends on feature extraction methods as well. Also, increasing the modality does not always ensure performance improvement. In this study, the PPI model integrating two modalities outperforms the designed uni-modal and tri-modal PPI models.


Assuntos
Algoritmos , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas/química , Sequência de Aminoácidos , Biologia Computacional/métodos
5.
Sci Rep ; 12(1): 8360, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589837

RESUMO

Proteins are the essential biological macromolecules required to perform nearly all biological processes, and cellular functions. Proteins rarely carry out their tasks in isolation but interact with other proteins (known as protein-protein interaction) present in their surroundings to complete biological activities. The knowledge of protein-protein interactions (PPIs) unravels the cellular behavior and its functionality. The computational methods automate the prediction of PPI and are less expensive than experimental methods in terms of resources and time. So far, most of the works on PPI have mainly focused on sequence information. Here, we use graph convolutional network (GCN) and graph attention network (GAT) to predict the interaction between proteins by utilizing protein's structural information and sequence features. We build the graphs of proteins from their PDB files, which contain 3D coordinates of atoms. The protein graph represents the amino acid network, also known as residue contact network, where each node is a residue. Two nodes are connected if they have a pair of atoms (one from each node) within the threshold distance. To extract the node/residue features, we use the protein language model. The input to the language model is the protein sequence, and the output is the feature vector for each amino acid of the underlying sequence. We validate the predictive capability of the proposed graph-based approach on two PPI datasets: Human and S. cerevisiae. Obtained results demonstrate the effectiveness of the proposed approach as it outperforms the previous leading methods. The source code for training and data to train the model are available at https://github.com/JhaKanchan15/PPI_GNN.git .


Assuntos
Redes Neurais de Computação , Saccharomyces cerevisiae , Sequência de Aminoácidos , Aminoácidos , Humanos , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Sci Rep ; 10(1): 19171, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154416

RESUMO

Protein is the primary building block of living organisms. It interacts with other proteins and is then involved in various biological processes. Protein-protein interactions (PPIs) help in predicting and hence help in understanding the functionality of the proteins, causes and growth of diseases, and designing new drugs. However, there is a vast gap between the available protein sequences and the identification of protein-protein interactions. To bridge this gap, researchers proposed several computational methods to reveal the interactions between proteins. These methods merely depend on sequence-based information of proteins. With the advancement of technology, different types of information related to proteins are available such as 3D structure information. Nowadays, deep learning techniques are adopted successfully in various domains, including bioinformatics. So, current work focuses on the utilization of different modalities, such as 3D structures and sequence-based information of proteins, and deep learning algorithms to predict PPIs. The proposed approach is divided into several phases. We first get several illustrations of proteins using their 3D coordinates information, and three attributes, such as hydropathy index, isoelectric point, and charge of amino acids. Amino acids are the building blocks of proteins. A pre-trained ResNet50 model, a subclass of a convolutional neural network, is utilized to extract features from these representations of proteins. Autocovariance and conjoint triad are two widely used sequence-based methods to encode proteins, which are used here as another modality of protein sequences. A stacked autoencoder is utilized to get the compact form of sequence-based information. Finally, the features obtained from different modalities are concatenated in pairs and fed into the classifier to predict labels for protein pairs. We have experimented on the human PPIs dataset and Saccharomyces cerevisiae PPIs dataset and compared our results with the state-of-the-art deep-learning-based classifiers. The results achieved by the proposed method are superior to those obtained by the existing methods. Extensive experimentations on different datasets indicate that our approach to learning and combining features from two different modalities is useful in PPI prediction.


Assuntos
Biologia Computacional/métodos , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas/metabolismo , Sequência de Aminoácidos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA