Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 363: 127969, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122844

RESUMO

The exploitation of lignocellulosic biomass (LB) such as sugar bagasse waste in biorefineries is the most cost-effective and favourable sustainable approach to producing essential platform chemicals, materials, and energy environmentally benignly. Herein, a microwave-mediated deep eutectic solvents (DESs)/dimethyl sulfoxide (DMSO) system for efficiently processing LB waste into platform chemicals was proposed thereof. Under optimized appropriate diverse parameters such as solvent varieties, catalyst dosage, DMSO addition, reaction time and temperature, the proposed catalytic system (i.e., microwave mediated DESs/DMSO system) has demonstrated significant yields of 5-hydroxymethylfurfural (5-HMF), furfural (FF) and levulinic acid (LevA) of 31.29 %, 28.38 % and 35.65 %, respectively. These favourable results were obtained at the reaction temperature of 140 °C for 40 min. The anticipated catalytic system's activation energy (Ea) was found to be 29.11 kJ/mol. Hence, a practical, inexpensive and sustainable process with the potential of high-value platform chemicals, explicitly for a sustainable strategy in a circular bioeconomy was proposed.


Assuntos
Dimetil Sulfóxido , Lignina , Biomassa , Carboidratos , Celulose , Solventes Eutéticos Profundos , Furaldeído , Micro-Ondas , Solventes , Açúcares
2.
J Environ Manage ; 234: 336-344, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639857

RESUMO

Efficient energy usage and energy saving is one of the nowadays necessity for all scientists of IC engine. This is because of the current environmental challenges that have tremendously increased concerning air pollution, particularly pollutant emissions from vehicles. Yet, industries and governments alike have disregarded this phenomenon which has been considerably contributing to climate change. It is against this background that, the research works carried out in this present study is predominantly focusing on improving energy efficiency and reducing emission levels from diesel engines. This can be achieved with the help of atmospheric-plasma system which can offer a noble solution to the above-mentioned challenges due to its potential to improve combustion efficiency which leads to energy efficiency, while reducing emission levels from diesel engines. In this study, the performance and emissions of a diesel generator supplemented with an atmospheric-plasma system was examined. The diesel engine was used to examine the effects of fuel composition, or brake specific fuel consumption, thermal efficiency and pollutant emissions at different plasma system voltages. To this end, we equally examined the effects of atmospheric-plasma system on energy efficiency improvement and emissions reduction from diesel engine as the main purpose of this study. We do so by testing the diesel-fueled engine generator under the atmospheric-plasma system. The tests were carried out at a constant state condition with the engine running at 2200 rpm with torque and power outputs of 10.4 Nm (75% of the max load) and 2.1 kW, separately, for the tested fuels and this was used to increase the output voltage of the plasma system during this study. The plasma system ionized the intake air and improved the formation of free radicals upon combustion. During this study, the output voltage of the plasma was set within the range of 0-7 kV. The experimental results have indicated that formaldehyde, acetaldehyde and acrolein account for more than 75% of total carbonyl compounds emissions. Simultaneously, it was also observed from the results that higher plasma system voltage reduces pollutants emissions levels. Hence, such reduction is predominantly evident for nitrogen oxides, particulate matters and carbon monoxide. However, the marginal improvements of engine performance and emissions reduction become insignificant when the plasma system voltage reaches 6 kV. On the other hand, increasing the amount of plasma system voltages in diesel engine continues to significantly reduce pollutant emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gasolina , Material Particulado , Emissões de Veículos
3.
J Hazard Mater ; 365: 771-777, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30476800

RESUMO

This research investigates the mileage and the health risk assessment of aerosol carcinogenicity and mutagenicity emitted by ten in-use motorcycles. The total p-PAHs emission factor of ten in-use motorcycles are 676.3 µg km-1 with average of 67.6 ± 13.6 µg km-1. Naphthalene (Nap) shows the largest emission factors, followed by phenanthrene (PA) and fluoranthen (FL). The mileage present high correlation coefficient (Rsp = 0.681) with CO. CO is associated with cumulative mileage leading to bad combustion efficiency, which caused low to high relationship for total p-PAHs (Rsp = 0.388), PM2.5 (Rsp = 0.680) and NOx (Rsp = 0.799). Both PM2.5 and total p-PAHs are generally generated via incomplete combustion and the results expressed the moderate to high correlation (Rsp = 0.578, 0.898) with NOx. Taking into consideration of high-mileage motorcycles (30,001-50,000 km), the toxic equivalent of carcinogenicity and mutagenicity exhaust are about 4.67, 1.99 and 3.89, 2.0 times higher than low (10,001-20,000 km) and middle (20,001-30,000 km) cumulative mileages, respectively. Therefore, in the conclusion of our study in compared with that of other research directed the fact that lower carcinogenicity and mutagenicity emission factor were found at lower cumulative mileages motorcycles however, the impact increases with the high cumulative mileage motorcycles.


Assuntos
Aerossóis/toxicidade , Motocicletas , Material Particulado/toxicidade , Testes de Carcinogenicidade , Testes de Mutagenicidade
4.
Biomed Eng Online ; 16(Suppl 1): 66, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28830522

RESUMO

BACKGROUND: The immunotoxicity of engine exhausts is of high concern to human health due to the increasing prevalence of immune-related diseases. However, the evaluation of immunotoxicity of engine exhausts is currently based on expensive and time-consuming experiments. It is desirable to develop efficient methods for immunotoxicity assessment. METHODS: To accelerate the development of safe alternative fuels, this study proposed a computational method for identifying informative features for predicting proinflammatory potentials of engine exhausts. A principal component regression (PCR) algorithm was applied to develop prediction models. The informative features were identified by a sequential backward feature elimination (SBFE) algorithm. RESULTS: A total of 19 informative chemical and biological features were successfully identified by SBFE algorithm. The informative features were utilized to develop a computational method named FS-CBM for predicting proinflammatory potentials of engine exhausts. FS-CBM model achieved a high performance with correlation coefficient values of 0.997 and 0.943 obtained from training and independent test sets, respectively. CONCLUSIONS: The FS-CBM model was developed for predicting proinflammatory potentials of engine exhausts with a large improvement on prediction performance compared with our previous CBM model. The proposed method could be further applied to construct models for bioactivities of mixtures.


Assuntos
Biologia Computacional , Imunotoxinas/toxicidade , Inflamação/induzido quimicamente , Emissões de Veículos/toxicidade , Algoritmos , Segurança
5.
Environ Res ; 156: 512-518, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28431378

RESUMO

This paper intend to investigate the effects of biodiesel fuel blends comprising of waste-cooking oil and butanol-diesel (B10W10-B10W40) under steady-state conditions. Both particulate organic carbon (OC) and PM including PM2.5 and PM10 significantly decreased with the increasing percentage of biodiesel fuel blends. The fuel blend of B10W40 also demonstrated the most effective function in reducing the emissions of PM10 and PM2.5 in the volume by 59.4% and 57.7%, respectively. Moreover, the emissions of nitrogen oxides decreased with the blending of B10W10-B10W40 (13.9-28.5%), while the brake specific fuel consumption was substantially increased (5.69-13.4%). The overall biological toxicity of PM10 generated from the fuel tested in this study was determined according to Single Cell Gel Electrophoresis assay in human alveolar basal epithelial A549 cells and micronucleus assay in CHO-K1 cells. In addition, the volume of more than 20% waste-cooking oil (B10W20 and B10W40) significantly reduced diesel-induced genotoxicity in lung cells and micronucleus formation in CHO-K1 cells. Collectively, these results indicated that biodiesel fuel blends with the butanol could be a potential alternative fuels for diesel engines because of its substantial property with a significant reduction of the PM-related genotoxicity and the emissions of PM, particulate OC, and NOX.


Assuntos
1-Butanol , Poluição do Ar/prevenção & controle , Biocombustíveis , Gasolina , Material Particulado/análise , Emissões de Veículos/análise , Células A549 , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Células CHO , Carbono/análise , Ensaio Cometa , Cricetulus , Humanos , Testes para Micronúcleos , Mutagênicos/análise , Óxidos de Nitrogênio/análise , Óleos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Resíduos
6.
Bioresour Technol ; 161: 304-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24721492

RESUMO

Growth of the hydrogen market has motivated increased study of hydrogen production. Understanding how biomass is converted to hydrogen gas can help in evaluating opportunities for reducing the environmental impact of petroleum-based fuels. The microwave power used in the reaction is found to be proportional to the rate of production of hydrogen gas, mass of hydrogen gas produced per gram of banyan leaves consumed, and amount of hydrogen gas formed with respect to the H-atom content of banyan leaves decomposed. Increase the microwave power levels results in an increase of H2 and decrease of CO2 concentrations in the gaseous products. This finding may possibly be ascribed to the water-gas shift reaction. These results will help to expand our knowledge concerning banyan leaves and hydrogen yield on the basis of microwave-assisted pyrolysis, which will improve the design of hydrogen production technologies.


Assuntos
Biocombustíveis , Ficus/química , Hidrogênio , Biomassa , Ficus/efeitos da radiação , Microscopia Eletrônica de Varredura , Micro-Ondas , Folhas de Planta/química , Folhas de Planta/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA