Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(1): 52-66, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222551

RESUMO

The immune system plays a key role in the development and progression of numerous diseases such as chronic wounds, autoimmune diseases, and various forms of cancer. Hence, controlling the behavior of immune cells has emerged as a promising approach for treating these diseases. Current modalities for immunomodulation focus on chemical based approaches, which while effective have the limitations of nonspecific systemic side effects or requiring invasive delivery approaches to reduce the systemic side effects. Recent advances have unraveled the significance of electrical stimulation as an attractive noninvasive approach to modulate immune cell phenotype and activity. This review provides insights on electrical stimulation strategies employed for regulating the behavior of macrophages, T and B cells, and neutrophils. For obtaining a better understanding, two major types of electrical stimulation sources, conventional and self-powered sources, that have been used for immunomodulation are extensively discussed. Next, the strategies of electrical stimulation that may be applied to cells in vitro and in vivo are discussed, with a focus on conventional and stimuli-responsive self-powered sources. A description of how these strategies influence the polarization, phagocytosis, migration, and differentiation of immune cells is also provided. Finally, recent developments in the use of highly localized and efficient platforms for electrical stimulation based immunomodulation are also highlighted.

2.
Adv Wound Care (New Rochelle) ; 12(6): 316-326, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651281

RESUMO

Objective: Inflammation has been linked to progression of diabetic foot ulcers (DFU); however, specific predictive markers of nonhealing are scarce. The goal of this study was to identify biochemical and immunological parameters from the blood as predictors of nonhealing in grade 1 and grade 2 DFU. Approach: Individuals with low-grade foot ulcers were enrolled in the study to determine if histopathological, biochemical, and immunological parameters could be used to predict individuals whose ulcers would not heal. Data analysis was performed using traditional univariate analyses as well as univariate and multivariable logistic regression, and STROBE guidelines were used for reporting data. Results: Among the 52 individuals who completed the study, we observe that no single histopathological and biochemical parameter was predictive. Conventional univariate analysis and univariate logistic regression analysis showed that the expression of the cell surface proteins CD63, HLA-DR, and CD11b on monocytes was significantly lower in nonhealed individuals, but with moderate discriminative ability. In comparison, a multivariable logistic regression model identified four of the 31 parameters to be salient predictors with low density lipoprotein (LDL) cholesterol (odds ratio [OR] 18.83, confidence interval [CI] 18.83-342) and cell-surface expression of CD63 on monocytes (OR 0.12, CI 0.12-0.45) showing significance and demonstrating high discrimination ability. Innovation: The approach of using a combination of biochemical and immunological parameters to predict ulcer healing is new. Conclusion: Through this study we conclude that LDL cholesterol and cell-surface expression of CD63 on monocytes strongly correlate with nonhealing in individuals with grade 1 and grade 2 DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Úlcera do Pé , Humanos , Estudos Prospectivos , Monócitos/patologia , Fenótipo
3.
ACS Omega ; 7(36): 31651-31657, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120021

RESUMO

The antioxidant property of cerium oxide nanoparticles has increased their demand as a nanocarrier to improve the delivery and therapeutic efficacy of anticancer drugs. Here, we report the synthesis of alginate-coated ceria nanoformulations (ceria NPs) and characterization using FTIR spectroscopy, Raman microscopy, and X-ray diffraction. The synthesized ceria NPs show negligible inherent in vitro toxicity when tested on a MDA-MB-231 breast cancer cell line at higher particle concentrations. Upon loading these particles with doxorubicin (Dox) and paclitaxel (PTX) drugs, we observe a potential synergistic cytotoxic effect mediated by the drug and the ceria NPs, resulting in the better killing capacity as well as suppression of cell migration against the MDA-MB-231 cell line. Further, to verify the immune-escaping capacity before targeting cancer cells, we coated the drug-loaded ceria NPs with the membrane of MDA-MB-231 cells using an extrusion method. The resultant delivery system exhibited in vitro preferential uptake by the MDA-MB-231 cell line and showed reduced uptake by the murine macrophage cell line (RAW 264.7), assigning its potential application as non-immunogenic personalized therapy in targeting and killing of cancer cells.

4.
ACS Bio Med Chem Au ; 2(4): 409-418, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996477

RESUMO

Diabetic foot ulcers are challenging to treat. Current strategies to treat these wounds focus on preventing infection and promoting tissue regrowth but are ineffective in many individuals. Low-grade chronic inflammation is present in individuals with diabetes, and altering the inflammatory responses at the wound site could be an alternate approach to promote healing. We hypothesized that immunomodulation of the wound microenvironment would result in accelerated healing. To test this hypothesis, we began by characterizing the changes in the myeloid cell phenotype in a mouse model [leptin receptor knockout (KO) mouse] that closely mimics the type 2 diabetes condition observed in humans. We observed increased numbers of monocytes and neutrophils in the circulation of the KO mice compared to that in wild-type control mice. We also observed several phenotypic changes in neutrophils from the KO diabetic mice, suggesting low-grade systemic inflammation. Hence, we developed a rapamycin-loaded chitosan scaffold that may be used to modulate immune responses. The use of these immunomodulatory scaffolds at a wound site resulted in accelerated healing compared to the healing using blank scaffolds. In summary, our data suggest that immunomodulation may be a viable strategy to promote the healing of wounds in individuals with diabetes.

5.
Mol Biol Cell ; 33(6): ar46, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35353012

RESUMO

Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets including Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a "master regulator"-T-bet (Th1), GATA3 (Th2), and RORγT (Th17)-that inhibits the other two master regulators. Such mutual repression among them at a transcriptional level can enable multistability, giving rise to six experimentally observed phenotype, Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/Th17, and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, particularly in the case of epigenetic influence, remain unclear. Here through mathematical modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node mutually repressing network to elucidate how epigenetic changes mediated by any master regulator can influence the transition rates among different cellular phenotypes. We show that the degree of plasticity exhibited by one phenotype depends on relative strength and duration of mutual epigenetic repression mediated among the master regulators in a three-node network. Further, our model predictions can offer putative mechanisms underlying relatively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/GATA3/RORγT.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Células Th17 , Diferenciação Celular , Fenótipo
6.
Trends Pharmacol Sci ; 43(4): 305-320, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35177253

RESUMO

Particle-based systems are becoming ubiquitous in the clinic. When administered in the body, phagocytic immune cells recognize these particles as foreign substances, resulting in their cellular engulfment for degradation and elimination. However, the internalization of particles may induce unintended effects on the functions of these immune cells. Understanding the consequences of particle uptake on immune cells is imperative to design biocompatible and efficient particulate formulations for diagnostic and therapeutic use. Here, we review the recent literature that describes the changes induced in immune cells following internalization of cargo-free particles. We also discuss how the inherent immunomodulatory properties of particles may be leveraged for therapeutic applications. We conclude with suggestions on newer methods to evaluate the effects of particles on immune cells.


Assuntos
Fagocitose , Transporte Biológico , Humanos
7.
J Leukoc Biol ; 112(3): 395-409, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35172385

RESUMO

Neutrophils play a crucial role in establishing inflammation in response to an infection or injury, but their production rates, as well as blood and tissue residence times, remain poorly characterized under these conditions. Herein, using a biomaterial implant model to establish inflammation followed by in vivo tracking of newly formed neutrophils, we determine neutrophil kinetics under inflammatory conditions. To obtain quantifiable information from our experimental observations, we develop an ordinary differential equation-based mathematical model to extract kinetic parameters. Our data show that in the presence of inflammation resulting in emergency granulopoiesis-like conditions, neutrophil maturation time in the bone marrow reduces by around 60% and reduced half-life in the blood, compared with noninflammatory conditions. Additionally, neutrophil residence time at the inflammatory site increases by 2-fold. Together, these data improve our understanding of neutrophil kinetics under inflammatory conditions, which could pave the way for therapies that focus on modulating in vivo neutrophil dynamics.


Assuntos
Medula Óssea , Neutrófilos , Animais , Hematopoese/fisiologia , Inflamação , Cinética , Camundongos , Neutrófilos/fisiologia
8.
J Control Release ; 343: 131-141, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085696

RESUMO

Humans are exposed to numerous synthetic foreign particles in the form of drug delivery systems and diagnostic agents. Specialized immune cells (phagocytes) clear these particles by phagocytosing and attempting to degrade them. The process of recognition and internalization of the particles may trigger changes in the function of phagocytes. Some of these changes, especially the ability of a particle-loaded phagocyte to take up and neutralize pathogens, remains poorly studied. Herein, we demonstrate that the uptake of non-stimulatory cargo-free particles enhances the phagocytic ability of monocytes, macrophages and neutrophils. The enhancement in phagocytic ability was independent of particle properties, such as size or the base material constituting the particle. Additionally, we show that the increased phagocytosis was not a result of cellular activation or cellular heterogeneity but was driven by changes in cell membrane fluidity and cellular compliance. A consequence of the enhanced phagocytic activity was that particulate-laden immune cells neutralize Escherichia coli (E. coli) faster in culture. Moreover, when administered in mice as a prophylactic, particulates enable faster clearance of E. coli and Staphylococcus epidermidis. Together, we demonstrate that the process of uptake induces cellular changes that favor additional phagocytic events. This study provides insights into using non-stimulatory cargo-free particles to engineer immune cell functions for applications involving faster clearance of phagocytosable abiotic and biotic material.


Assuntos
Escherichia coli , Neutrófilos , Animais , Macrófagos/metabolismo , Camundongos , Monócitos , Fagócitos , Fagocitose
9.
Mol Pharm ; 18(12): 4501-4510, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34748349

RESUMO

Particles injected intravenously are thought to be cleared by macrophages residing in the liver and spleen, but they also encounter circulating immune cells. It remains to be established if the circulating cells can take up particles while flowing and if the uptake capacity is similar under static and flow conditions. Here, we use an in vitro peristaltic pump setup that mimics pulsatile blood flow to determine if immune cells take up particles under constant fluidic flow. We use polystyrene particles of varying sizes as the model of a polymeric particle for these studies. Our results show that the immune cells do phagocytose under flow conditions. We demonstrate that cell lines representing myeloid cells, primary human neutrophils, and monocytes take up submicrometer-sized particles at similar or better rates under flow compared to static conditions. Experiments with whole human blood show that, even under the crowding effects of red blood cells, neutrophils and monocytes take up particles while flowing. Together, these data suggest that circulating immune cells are likely to phagocytose intravenously injected particulates, which has implications for the design of particles to evade or target these cells.


Assuntos
Macrófagos/metabolismo , Monócitos/metabolismo , Neutrófilos/metabolismo , Fagocitose , Animais , Humanos , Camundongos , Células RAW 264.7 , Resistência ao Cisalhamento
10.
Oncoimmunology ; 10(1): 1957215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377594

RESUMO

Gliomas are heavily infiltrated with immune cells of myeloid origin. Past studies have shown that high-grade gliomas have a higher proportion of alternatively activated and suppressive myeloid cells when compared to low-grade gliomas, which correlate with poor prognosis. However, the differences in immune cell phenotypes within high-grade gliomas (between grade 3 and grade 4 or GBM) are relatively less explored, and a correlation of phenotypic characteristics between immune cells in the blood and high-grade tumors has not been performed. Additionally, myeloid cells of granulocytic origin present in gliomas remain poorly characterized. Herein, we address these questions through phenotypic characterizations of monocytes and neutrophils present in blood and tumors of individuals with glioblastoma (GBM, IDH-wild type) or grade 3 IDH-mutant gliomas. We observe that neutrophils are highly heterogeneous among individuals with glioma, and are different from healthy controls. We also show that CD163 expressing M2 monocytes are present in greater proportions in GBM tissue when compared to grade 3 IDH-mutant glioma tissue, and a larger proportion of granulocytic myeloid-derived suppressor cells are present in grade 3 IDH-mutant gliomas when compared to GBM. Finally, we demonstrate that the expression levels of CD86 and CD63 showed a high correlation between blood and tumor and suggest that these may be used as possible markers for prognosis.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Humanos , Isocitrato Desidrogenase/genética
12.
Biochim Biophys Acta Mol Cell Res ; 1868(9): 119063, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34022281

RESUMO

The effects of senescence on geriatric disorders are well explored, but how it influences infections in the elderly is poorly addressed. Here, we show that several anti-microbial responses are elevated in senescent epithelial cells and old mice, which results in decreased bacterial survival in the host after infection. We identify higher levels of iNOS as a crucial host response and show that p38 MAPK in senescent epithelial cells acts as a negative regulator of iNOS transcription. However, in older mice, the ability to impede bacterial infection does not result in enhanced survival, possibly because elevated pro-inflammatory responses are not countered by a robust host protective anti-inflammatory response. Overall, while addressing an alternate advantage of senescent cells, our study demonstrates that infection-associated morbidity in the elderly may not be the sole outcome of pathogen loads but may also be influenced by the host's ability to resolve inflammation-induced damage.


Assuntos
Tuberculose/metabolismo , Animais , Senescência Celular , Interações Hospedeiro-Patógeno , Humanos , Tuberculose/patologia
13.
J Indian Inst Sci ; 100(4): 673-681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041543

RESUMO

The disease caused by SARS-CoV-2-CoVID-19-is a global pandemic that has brought severe changes worldwide. Approximately 80% of the infected patients are largely asymptomatic or have mild symptoms such as fever or cough, while rest of the patients display varying degrees of severity of symptoms, with an average mortality rate of 3-4%. Severe symptoms such as pneumonia and acute respiratory distress syndrome may be caused by tissue damage, which is mostly due to aggravated and unresolved innate and adaptive immune response, often resulting from a cytokine storm. Here, we discuss how an intricate interplay among infected cells and cells of innate and adaptive immune system can lead to such diverse clinicopathological outcomes. Particularly, we discuss how the emergent nonlinear dynamics of interaction among the components of adaptive and immune system components and virally infected cells can drive different disease severity. Such minimalistic yet rigorous mathematical modeling approaches are helpful in explaining how various co-morbidity risk factors, such as age and obesity, can aggravate the severity of CoVID-19 in patients. Furthermore, such approaches can elucidate how a fine-tuned balance of infected cell killing and resolution of inflammation can lead to infection clearance, while disruptions can drive different severe phenotypes. These results can help further in a rational selection of drug combinations that can effectively balance viral clearance and minimize tissue damage.

14.
J R Soc Interface ; 17(170): 20200631, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32993428

RESUMO

Identifying the design principles of complex regulatory networks driving cellular decision-making remains essential to decode embryonic development as well as enhance cellular reprogramming. A well-studied network motif involved in cellular decision-making is a toggle switch-a set of two opposing transcription factors A and B, each of which is a master regulator of a specific cell fate and can inhibit the activity of the other. A toggle switch can lead to two possible states-(high A, low B) and (low A, high B)-and drives the 'either-or' choice between these two cell fates for a common progenitor cell. However, the principles of coupled toggle switches remain unclear. Here, we investigate the dynamics of three master regulators A, B and C inhibiting each other, thus forming three-coupled toggle switches to form a toggle triad. Our simulations show that this toggle triad can lead to co-existence of cells into three differentiated 'single positive' phenotypes-(high A, low B, low C), (low A, high B, low C) and (low A, low B, high C). Moreover, the hybrid or 'double positive' phenotypes-(high A, high B, low C), (low A, high B, high C) and (high A, low B, high C)-can coexist together with 'single positive' phenotypes. Including self-activation loops on A, B and C can increase the frequency of 'double positive' states. Finally, we apply our results to understand cellular decision-making in terms of differentiation of naive CD4+ T cells into Th1, Th2 and Th17 states, where hybrid Th1/Th2 and hybrid Th1/Th17 cells have been reported in addition to the Th1, Th2 and Th17 ones. Our results offer novel insights into the design principles of a multi-stable network topology and provide a framework for synthetic biology to design tristable systems.


Assuntos
Biologia Sintética , Fatores de Transcrição , Diferenciação Celular , Desenvolvimento Embrionário
15.
Biofouling ; 36(4): 479-491, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32546074

RESUMO

Coumarins have been shown to possess antimicrobial, anti-quorum sensing and anti-biofilm properties against a wide range of pathogenic bacteria. This study aimed to shed light on the effects of non-substituted coumarin on biofilm formation by the foodborne pathogen Salmonella Typhimurium. Additionally, its efficacy was tested in combination with another potent anti-biofilm agent, resveratrol. Coumarin inhibited biofilm formation for prolonged periods in millimolar concentrations with marginal effects on planktonic growth. It attenuated curli and cellulose production, likely by downregulating the transcript levels of major biofilm formation genes csgD, csgA and adrA. Coumarin further restricted motility in a dose-dependent manner. In addition, coumarin with resveratrol exhibited improved anti-biofilm properties compared with the individual compounds alone. Thus, coumarin alone or with resveratrol can be employed for inhibiting biofilms in food storage and processing units.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cumarínicos/farmacologia , Salmonella typhimurium , Biofilmes/crescimento & desenvolvimento
16.
Nat Biomed Eng ; 4(8): 814-826, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32231313

RESUMO

The long-term function of transplanted therapeutic cells typically requires systemic immune suppression. Here, we show that a retrievable implant comprising a silicone reservoir and a porous polymeric membrane protects human cells encapsulated in it after implant transplantation in the intraperitoneal space of immunocompetent mice. Membranes with pores 1 µm in diameter allowed host macrophages to migrate into the device without the loss of transplanted cells, whereas membranes with pore sizes <0.8 µm prevented their infiltration by immune cells. A synthetic polymer coating prevented fibrosis and was necessary for the long-term function of the device. For >130 days, the device supported human cells engineered to secrete erythropoietin in immunocompetent mice, as well as transgenic human cells carrying an inducible gene circuit for the on-demand secretion of erythropoietin. Pancreatic islets from rats encapsulated in the device and implanted in diabetic mice restored normoglycaemia in the mice for over 75 days. The biocompatible device provides a retrievable solution for the transplantation of engineered cells in the absence of immunosuppression.


Assuntos
Transplante de Células/métodos , Sobrevivência de Enxerto , Próteses e Implantes , Animais , Cápsulas , Transplante de Células/instrumentação , Materiais Revestidos Biocompatíveis , Diabetes Mellitus Experimental/terapia , Desenho de Equipamento , Eritropoetina/genética , Eritropoetina/metabolismo , Reação a Corpo Estranho/prevenção & controle , Células HEK293 , Humanos , Ilhotas Pancreáticas , Transplante das Ilhotas Pancreáticas/instrumentação , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Permeabilidade , Ratos , Transplante Heterólogo
17.
Biomacromolecules ; 20(12): 4430-4436, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31682423

RESUMO

The ability to engineer immune function has transformed modern medicine, highlighted by the success of vaccinations and recent efforts in cancer immunotherapy. Further directions in programming the immune system focus on the design of immunomodulatory biomaterials that can recruit, engage with, and program immune cells locally in vivo. Here, we synthesized shear-thinning and self-healing polymer-nanoparticle (PNP) hydrogels as a tunable and injectable biomaterial platform for local dendritic cell (DC) recruitment. PNP gels were formed from two populations of poly(ethylene glycol)-block-polylactide (PEG-b-PLA) NPs with the same diameter but different PEG brush length (2 or 5 kDa). PEG-b-PLA NPs with the longer PEG brush exhibited improved gel formation following self-assembly and faster recovery after shear-thinning. In all cases, model protein therapeutics were released via Fickian diffusion in vitro, and minor differences in the release rate between the gel formulations were observed. PNP hydrogels were loaded with the DC cytokine CCL21 and injected subcutaneously in a murine model. CCL21-loaded PNP hydrogels recruited DCs preferentially to the site of injection in vivo relative to non-CCL21-loaded hydrogels. Thus, PNP hydrogels comprise a simple and tunable platform biomaterial for in vivo immunomodulation following minimally invasive subcutaneous injection.


Assuntos
Quimiocina CCL21 , Células Dendríticas/imunologia , Hidrogéis , Lactatos , Nanopartículas/química , Polietilenoglicóis , Animais , Quimiocina CCL21/química , Quimiocina CCL21/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Células Dendríticas/citologia , Hidrogéis/química , Hidrogéis/farmacologia , Injeções Subcutâneas , Lactatos/química , Lactatos/farmacologia , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
18.
ACS Omega ; 4(5): 9284-9293, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460017

RESUMO

Graphene oxide (GO) nanoparticles have been developed for a variety of biomedical applications as a number of different therapeutic modalities may be added onto them. Here, we report the development and testing of such a multifunctional GO nanoparticle platform that contains a grafted cell-targeting functionality, active pharmaceutical ingredients, and particulates that enable the use of magnetothermal therapy. Specifically, we demonstrate the ability to covalently attach hyaluronic acid (HA) onto GO, and the resultant nanoparticulates (GO-HA) exhibited low inherent toxicity toward two different breast cancer cell lines, BT-474 and MDA-MB-231. Doxorubicin (Dox) and paclitaxel (Ptx) were successfully loaded onto GO-HA with high and moderate efficiencies, respectively. A GO-HA-Dox/Ptx system was significantly better than the GO-Dox/Ptx system at specifically killing CD44-expressing MDA-MB-231 cells but not BT-474 cells that do not express CD44. Further, modified iron oxide nanoparticles were loaded onto the GO-HA-Dox system, enabling the use of magnetic hyperthermia. Hyperthermia in combination with Dox treatment through the GO-HA system showed significantly better performance in reducing viable tumor cell numbers when compared to the individual systems. In summary, we showcase a multifunctional GO nanoparticle system that demonstrates improved efficacy in killing tumor cells.

19.
J Biol Chem ; 294(10): 3385-3396, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30602572

RESUMO

Mitochondria are organized as tubular networks in the cell and undergo fission and fusion. Although several of the molecular players involved in mediating mitochondrial dynamics have been identified, the precise cellular cues that initiate mitochondrial fission or fusion remain largely unknown. In fission yeast (Schizosaccharomyces pombe), mitochondria are organized along microtubule bundles. Here, we employed deletions of kinesin-like proteins to perturb microtubule dynamics and used high-resolution and time-lapse fluorescence microscopy, revealing that mitochondrial lengths mimic microtubule lengths. Furthermore, we determined that compared with WT cells, mutant cells with long microtubules exhibit fewer mitochondria, and mutant cells with short microtubules have an increased number of mitochondria because of reduced mitochondrial fission in the former and elevated fission in the latter. Correspondingly, upon onset of closed mitosis in fission yeast, wherein interphase microtubules assemble to form the spindle within the nucleus, we observed increased mitochondrial fission. We found that the consequent rise in the mitochondrial copy number is necessary to reduce partitioning errors during independent segregation of mitochondria between daughter cells. We also discovered that the association of mitochondria with microtubules physically impedes the assembly of the fission protein Dnm1 around mitochondria, resulting in inhibition of mitochondrial fission. Taken together, we demonstrate a mechanism for the regulation of mitochondrial fission that is dictated by the interaction between mitochondria and the microtubule cytoskeleton.


Assuntos
Dinaminas/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Dinaminas/genética , Microtúbulos/genética , Mitocôndrias/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
20.
Biomater Sci ; 7(4): 1411-1421, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30663741

RESUMO

Surface modification of particulate systems is a commonly employed strategy to alter their interaction with proteins and cells. Past studies on nano-particles have shown that surface functionalization with polyethylene glycol (PEG) or proteins such as albumin increases circulation times by reducing their phagocytic uptake. However, studies on surface functionalized micro-particles have reported contradictory results. Here, we investigate the effects of surface functionalization using polystyrene particles with 4 different diameters ranging from 30 nm to 2.6 µm and coating them with either albumin or PEG. Our results show that with increasing particle size, surface functionalization has less to no effect on altering phagocytic uptake. The data also suggest that these differences are observed with a dense arrangement of molecules on the surface (dense brush conformation for PEG conjugation), appear to be independent of the serum proteins adsorbing on particle surfaces, and are independent of the endocytic uptake pathway. These results provide insight into the differences in the ability of surface modified nano- and micro-particles to avoid phagocytic uptake.


Assuntos
Albuminas/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Células Cultivadas , Humanos , Camundongos , Monócitos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA