Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 3): 159861, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36397603

RESUMO

Microbial diversity and activities in petroleum reservoir systems can be altered by water-flooding operation, but the current understanding of the mechanism for such changes in microbial composition characteristics and community is inadequate. In this study, microbial communities especially functional groups in production water from five petroleum reservoirs in China were investigated by chemical and molecular biological analyses. The dominant and core phyla in the five oil reservoirs were Proteobacteria, Deferribacterota, Firmicutes, Desulfobacterota, Euryarchaeota and Thermoplasmatota. At the genus level, the dominant taxa in each petroleum reservoir were different, and not all of the dominant genera were the core members across the five oil reservoirs. The microbiologically influenced corrosion (MIC) were investigated for the functional groups in each production water. The corrosion rates in production water were higher than controls with a positive correlation to the abundances of sulfate-reducing prokaryotes (SRP). The SRP diversity based on the aprA and dsrA gene analysis showed that obvious differences were evident between onshore (JS, SL, DQ and XJ) and offshore (BS) oilfields. The core SRP taxa in onshore oilfields were Desulfomicrobium and Desulfovibrio, also with Desulfotomaculum in medium/low-temperature oil reservoirs (DQ and XJ), but in high-temperature petroleum reservoirs (JS, BS and SL), Archaeoglobus, Thermodesulfobacterium and Thermodesulfovibrio were the core groups. Statistical analysis indicated that temperature, electron acceptors and donors showed significant influence on the SRP community. This research reveals the characteristics of microbial and functional community as well as their interaction mechanism on corrosion in petroleum reservoir environments, and will improve industrial bio-control and management of MIC in oilfields.


Assuntos
Microbiota , Petróleo , Sulfatos , Água , China
2.
AMB Express ; 10(1): 23, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32008120

RESUMO

In the present study, a methanogenic alkane-degrading (a mixture of C9 to C12n-alkanes) culture enriched from production water of a low-temperature oil reservoir was established and assessed. Significant methane production was detected in the alkane-amended enrichment cultures compared with alkane-free controls over an incubation period of 1 year. At the end of the incubation, fumarate addition metabolites (C9 to C12 alkylsuccinates) and assA genes (encoding the alpha subunit of alkylsuccinate synthase) were detected only in the alkane-amended enrichment cultures. Microbial community analysis showed that putative syntrophic n-alkane degraders (Smithella) capable of initiating n-alkanes by fumarate addition mechanism were enriched in the alkane-amended enrichment cultures. In addition, both hydrogenotrophic (Methanocalculus) and acetoclastic (Methanothrix) methanogens were also observed. Our results provide further evidence that alkanes can be activated by addition to fumarate under methanogenic conditions.

3.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175186

RESUMO

Methanogenic degradation of n-alkanes is prevalent in n-alkane-impacted anoxic oil reservoirs and oil-polluted sites. However, little is known about the initial activation mechanism of the substrate, especially n-alkanes with a chain length above C16 Here, a methanogenic C16 to C20n-alkane-degrading enrichment culture was established from production water of a low-temperature oil reservoir. At the end of the incubation (364 days), C16 to C20 (1-methylalkyl)succinates were detected in the n-alkane-amended enrichment culture, suggesting that fumarate addition had occurred in the degradation process. This evidence is supported further by the positive amplification of the assA gene encoding the alpha subunit of alkylsuccinate synthase. A phylogenetic analysis shows these assA amplicons to be affiliated with Smithella and Desulfatibacillum clades. Together with the high abundance of these clades in the bacterial community, these two species are postulated to be the key players in the degradation of C16 to C20n-alkanes in the present study. Our results provide evidence that long n-alkanes are activated via a fumarate addition mechanism under methanogenic conditions.IMPORTANCE Methanogenic hydrocarbon degradation is the major process for oil degradation in subsurface oil reservoirs and is blamed for the formation of heavy oil and oil sands. Addition of n-alkanes to fumarate yielding alkyl-substituted succinates is a well-characterized anaerobic activation mechanism for hydrocarbons and is the most common activation mechanism in the anaerobic biodegradation of n-alkanes with chain lengths less than C16 However, the activation mechanism involved in the methanogenic biodegradation of n-alkanes longer than C16 is still uncertain. In this study, we analyzed a methanogenic enrichment culture amended with a mixture of C16 to C20n-alkanes. These n-alkanes can be activated via fumarate addition by mixed cultures containing Smithella and Desulfatibacillum species under methanogenic conditions. These observations provide a fundamental understanding of long-n-alkane metabolism under methanogenic conditions and have important applications for the remediation of oil-contaminated sites and for energy recovery from oil reservoirs.


Assuntos
Alcanos/metabolismo , Deltaproteobacteria/metabolismo , Fumaratos/metabolismo , Metano/metabolismo , Alcanos/química , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Crescimento Quimioautotrófico , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA