Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39057373

RESUMO

This paper investigated the inhibitory effect of Sesamol (Ses) on Pestalotiopsis neglecta. The potential inhibitory mechanisms were explored by observing changes in cell morphology, measuring alterations in cell membrane-related indices, as well as energy metabolism-related indices and changes in enzyme activities related to virulence. The results show that Ses completely inhibited the growth of P. neglecta at 600 µg/mL (minimum inhibitory concentration and minimum fungicidal concentration), with an EC50 of 142 ± 13.22 µg/mL. As observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), Ses treatment resulted in the breakage and crumpling of P. neglecta cell membrane and organelle lysis. Ergosterol content and the total lipid in P. neglecta treated with 300 µg/mL Ses was 91.52% and 54% of that in the control groups, respectively. In addition, spores were stained, increased leakage of intracellular constituents at 260 nm, and decreased extracellular pH. This suggests damage to the cell membrane integrity and permeability. Furthermore, Ses decreased the ATP levels and key enzymes in the tricarboxylic acid (TCA) cycle, indicating interference with the fungal energy metabolism. Moreover, the activities of polygalacturonase (PG) and endoglucanase (EG) of P. neglecta treated with 300 µg/mL of Ses were only 28.20% and 29.13% of that in the control groups, respectively, indicating that Ses can reduce the virulence of P. neglecta. In conclusion, our results show that Ses should be considered as a potential plant-derived fungicide due to its ability to disrupt the morphology of P. neglecta, damage cell membrane integrity and permeability in P. neglecta, interfere with energy metabolism, and reduce its virulence, ultimately affecting the fungal growth.

2.
Int J Immunopathol Pharmacol ; 38: 3946320241254083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869980

RESUMO

INTRODUCTION: Corilagin possesses a diverse range of pharmacologic bioactivities. However, the specific protective effects and mechanisms of action of corilagin in the context of atherosclerosis remain unclear. In this study, we investigated the impact of corilagin on the toll-like receptor (TLR)4 signaling pathway in a mouse vascular smooth muscle cell line (MOVAS) stimulated by oxidized low-density lipoprotein (ox-LDL). Additionally, we examined the effects of corilagin in Sprague-Dawley rats experiencing atherosclerosis. METHODS: The cytotoxicity of corilagin was assessed using the CCK8 assay. MOVAS cells, pre-incubated with ox-LDL, underwent treatment with varying concentrations of corilagin. TLR4 expression was modulated by either downregulation through small interfering (si)RNA or upregulation via lentivirus transfection. Molecular expression within the TLR4 signaling pathway was analyzed using real-time polymerase chain reaction (PCR) and Western blotting. The proliferation capacity of MOVAS cells was determined through cell counting. In a rat model, atherosclerosis was induced in femoral arteries using an improved guidewire injury method, and TLR4 expression in plaque areas was assessed using immunofluorescence. Pathological changes were examined through hematoxylin and eosin staining, as well as Oil-Red-O staining. RESULTS: Corilagin demonstrated inhibitory effects on the TLR4 signaling pathway in MOVAS cells pre-stimulated with ox-LDL, consequently impeding the proliferative impact of ox-LDL. The modulation of TLR4 expression, either through downregulation or upregulation, similarly influenced the expression of downstream molecules. In an in vivo context, corilagin exhibited the ability to suppress TLR4 and MyD88 expression in the plaque lesion areas of rat femoral arteries, thereby alleviating the formation of atherosclerotic plaques. CONCLUSION: Corilagin can inhibit the TLR4 signaling pathway in VSMCs, possibly by downregulating TLR4 expression and, consequently, relieving atherosclerosis.


Assuntos
Aterosclerose , Glucosídeos , Taninos Hidrolisáveis , Lipoproteínas LDL , Músculo Liso Vascular , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Taninos Hidrolisáveis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Lipoproteínas LDL/metabolismo , Masculino , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Camundongos , Linhagem Celular , Ratos , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Modelos Animais de Doenças , Fator 88 de Diferenciação Mieloide/metabolismo
3.
Int J Biol Macromol ; 262(Pt 1): 130257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423904

RESUMO

The genus Schisandra, a member of the Magnoliaceae family, is a well-known tonic traditional Chinese medicine with a long history of traditional medicinal and functional food used in China. Polysaccharides are one of its main active constituents, which have a wide range of bioactivities, such as anti-inflammatory, anti-tumor, neuroprotection, anti-diabetes, hepatoprotection, immunomodulation, and anti-fatigue. In this paper, we review the extraction, isolation, purification, structural characterization, bioactivities, as well as structure-activity relationship of polysaccharides from the genus Schisandra. In conclusion, we hope that this review could provide reference for the subsequent research on structural, bioactivities, development and application of the genus Schisandra polysaccharides.


Assuntos
Ciclo-Octanos , Lignanas , Compostos Policíclicos , Schisandra , Schisandra/química , Polissacarídeos/química , Extratos Vegetais/química , Antioxidantes
4.
Entropy (Basel) ; 24(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37420376

RESUMO

Image fusion technology can process multiple single image data into more reliable and comprehensive data, which play a key role in accurate target recognition and subsequent image processing. In view of the incomplete image decomposition, redundant extraction of infrared image energy information and incomplete feature extraction of visible images by existing algorithms, a fusion algorithm for infrared and visible image based on three-scale decomposition and ResNet feature transfer is proposed. Compared with the existing image decomposition methods, the three-scale decomposition method is used to finely layer the source image through two decompositions. Then, an optimized WLS method is designed to fuse the energy layer, which fully considers the infrared energy information and visible detail information. In addition, a ResNet-feature transfer method is designed for detail layer fusion, which can extract detailed information such as deeper contour structures. Finally, the structural layers are fused by weighted average strategy. Experimental results show that the proposed algorithm performs well in both visual effects and quantitative evaluation results compared with the five methods.

5.
Pestic Biochem Physiol ; 169: 104639, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828363

RESUMO

Sodium pheophorbide a (SPA) is a new alternative fungicide with low toxicity and high efficiency, which has high fungicidal activity against Pestalotiopsis neglecta, a pathogen that causes black spot needle blight of Pinus sylvestris var. mongolica. To utilize SPA for plant disease control, understanding its antifungal mechanism is essential. Six cDNA libraries were constructed from 3 d-old P. neglecta mycelia (three SPA-infected and three untreated groups) and 29,850 expressed genes were obtained by Illumina HiSeq4000 sequencing. Compared with controls, 3268 differentially expressed genes (DEGs) were identified in SPA-treated groups, including 1879 upregulated and 1389 downregulated genes. Most DEGs were involved in the metabolism of amino acids, carbohydrates, and lipids, as well as cell structure and genetic information processing. These findings were further confirmed by decreased conductivity, RNA and protein content, and activities of nicotinamide adenine dinucleotide-dependent malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, and succinate dehydrogenase. Moreover, qRT-PCR verified the reliability of the transcriptome results. After treatment with SPA at different concentrations for 60 min, the expressions of three cell wall degrading enzyme-related genes (PnEG, PnBG, and PnPG) were all suppressed. Overall, this study provided insights into the molecular mechanisms through which SPA inhibits P. neglecta, increasing the possibility of developing SPA into an effective fungicide in the future.


Assuntos
Sódio , Transcriptoma , Parede Celular , Clorofila/análogos & derivados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Reprodutibilidade dos Testes
6.
Pestic Biochem Physiol ; 167: 104584, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32527419

RESUMO

Recently, photodynamic therapy (PDT) and photoactivated pesticides have attracted considerable research attention. In the present study, we aimed to investigate the photodynamic activity of a chlorophyllous derivative, sodium pheophorbide a (SPA), and to evaluate its potential as a photoactivated fungicide. The singlet oxygen quantum yield, the photoreaction process, the anti-photobleaching ability in sterile water (H2O), the effect of light conditions on its antifungal activity, and its stability were all investigated. SPA showed significant fungicidal activity and photostability, during which Type I and Type II photodynamic reactions occurred simultaneously on Pestalotiopsis neglecta, and the influence of Type I was slightly larger than that of Type II. In addition, light promoted the antifungal activity of SPA. In particular, the antifungal activity was enhanced with increasing light intensity, and was strongest under 8000 lx conditions. Under monochromatic light sources, antifungal activity was strongest under green light s; however, the effect of monochromatic light was not as good as that of white light. From 0 to 24 h, the antifungal effect of the SPA solution was enhanced; however, the activity of the solution began to weaken after 24 h. Furthermore, our study confirmed that the antifungal activity of SPA was stable under different temperatures, pH values, and UV irradiation durations.


Assuntos
Fotoquimioterapia , Sódio , Antifúngicos , Clorofila/análogos & derivados , Fármacos Fotossensibilizantes
7.
Pestic Biochem Physiol ; 166: 104581, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448427

RESUMO

Sodium pheophorbide a (SPA) is a natural photosensitizer. The present study investigated the antifungal activity and mechanism of SPA against Botrytis cinerea in vitro and in vivo. Its inhibitory effect was studied on the spore germination and mycelial growth of B. cinerea. The effects of SPA on cell wall integrity, cell membrane permeability, and mycelial morphology of B. cinerea were also determined. Additionally, how SPA effected B. cinerea in vivo was evaluated using cherry tomato fruit. The results showed that SPA effectively inhibited the spore germination and mycelial growth of B. cinerea under light conditions (4000 lx). SPA significantly affected both cell wall integrity and cell membrane permeability (P < .05). In addition, SEM analysis suggested that B. cinerea treated with SPA (12.134 mg/mL) showed abnormal mycelial morphology, including atrophy, collapse, flattening, and mycelial wall dissolution. In vivo tests showed that SPA could increase the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) significantly (P < .05); however, SPA had no significant effect on phenylalanine ammonia lyase (PAL) activity. In short, SPA could destroy the fungal cell structure and enhance disease resistance-related enzyme activity in cherry tomatoes, thereby controlling cherry tomato gray mold.


Assuntos
Solanum lycopersicum , Botrytis , Clorofila/análogos & derivados , Resistência à Doença , Frutas , Humanos , Sódio
8.
J Infect Dis ; 222(3): 443-455, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32115640

RESUMO

BACKGROUND: Encephalitis in hand, foot, and mouth disease (HFMD) is a serious threat to children's health and life. Toll-like receptor 3 (TLR3) is an innate immune-recognition receptor that can recognize virus and initiate innate immune responses. Emodin has the effects of anti-inflammatory and regulating immune function, but the mechanism is not very clear. METHODS: Cells and mice were pretreated with coxsackievirus B3m (CVB3) and treated with emodin. The messenger ribonucleic acid (mRNA) and protein levels of TLR3 and downstream molecules were detected by quantitative real-time polymearse chain reaction and western blotting analysis, respectively. TLR3 expression was also downregulated by anti-TLR3 antibody (TLR3Ab) or small interfering RNA (siRNA). Pathological changes were assessed with hematoxylin and eosin staining. Immunohistochemistry was used to examine the expression of TLR3 in brain tissues. The expression of interleukin (IL)-6, nuclear factor (NF)-κB, and interferon (IFN)-ß in serum were tested with enzyme-linked immunosorbent assay. RESULTS: Emodin decreased the mRNA and protein levels of TLR3 and downstream molecules in vitro and in vivo. After downregulating TLR3 using anti-TLR3Ab or siRNA, emodin could still decrease the mRNA and protein levels of TLR3 and downstream molecules. Emodin also displayed notable effects on pathology, TLR3 protein in brain tissues, and expression of IL-6, NF-κB, IFN-ß, in serum. CONCLUSIONS: Emodin exerts a protective effect in CVB3-mediated encephalitis in HFMD by inhibiting the TLR3 pathway.


Assuntos
Emodina/farmacologia , Encefalite/tratamento farmacológico , Doença de Mão, Pé e Boca/virologia , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo , Animais , Western Blotting , Células Cultivadas , Encefalite/imunologia , Encefalite/virologia , Enterovirus/imunologia , Ensaio de Imunoadsorção Enzimática , Imunidade Inata , Interferon beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , RNA Mensageiro/efeitos dos fármacos , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA