Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(2): 923-935, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629725

RESUMO

Serine proteases are one of the largest mechanistic classes of proteases. They regulate a plethora of biochemical pathways inside and outside the cell. Aberrant serine protease activity leads to a wide variety of human diseases. Reagents to visualize these activities can be used to gain insight into the biological roles of serine proteases. Moreover, they may find future use for the detection of serine proteases as biomarkers. In this review, we discuss small molecule tools to image serine protease activity. Specifically, we outline different covalent activity-based probes and their selectivity against various serine protease targets. We also describe their application in several imaging methods.


Assuntos
Serina Proteases , Serina Proteases/metabolismo , Humanos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Animais , Imagem Molecular/métodos
2.
Chembiochem ; 24(21): e202300418, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37671979

RESUMO

Intramembrane serine proteases (rhomboid proteases) are involved in a variety of biological processes and are implicated in several diseases. Here, we report 4-oxo-ß-lactams as a novel scaffold for inhibition of rhomboids. We show that they covalently react with the active site and that the covalent bond is sufficiently stable for detection of the covalent rhomboid-lactam complex. 4-Oxo-ß-lactams may therefore find future use as both inhibitors and activity-based probes for rhomboid proteases.


Assuntos
Endopeptidases , beta-Lactamas , beta-Lactamas/farmacologia , Serina Proteases
3.
Org Biomol Chem ; 21(32): 6498-6502, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530461

RESUMO

Activity-based probes (ABPs) are covalent chemical tools that are widely used to target proteases in chemical biology. Here, we report a series of novel ABPs for the serine protease furin with phosphonate and phosphinate esters as reactive electrophiles. We show that these probes covalently label furin and have nanomolar potencies, because of proposed interactions with the different recognition pockets around the active site of furin.

4.
Cell Chem Biol ; 29(6): 1024-1036.e5, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35093210

RESUMO

Identification of the tyrosine phosphorylation (pY)-dependent interactome of immune co-receptors is crucial for understanding signal pathways involved in immunotherapy. However, identifying the motif-specific interactome for each pY commonly found on these multi-phosphorylated membrane proteins remains challenging. Here, we describe a photoaffinity-based chemical proteomic approach to dissect the motif-specific cytoplasmic interactomes of the critical immune co-receptor CD28. Various full-length CD28 cytoplasmic tails (CD28cyto) with defined pY and selectively replaced photo-methionine were synthesized and applied to explore three pY-motif-dependent CD28cyto interactomes. We identified a stand-alone interaction of phospholipase PLCG1 with the Y191 motif with enhanced affinity for the sequence neighboring the transmembrane domain. Importantly, taking advantage of native top-down mass spectrometry with a 193-nm laser, we discovered the direct association of a previously undefined pY218 motif with the kinase PKCθ through its C2 domain. This synthetic CD28cyto-based photoaffinity proteomic approach is generically applicable to the study of other immune co-receptors with multiple pY sites on their linear cytoplasmic tail.


Assuntos
Antígenos CD28 , Proteômica , Antígenos CD28/química , Antígenos CD28/metabolismo , Espectrometria de Massas , Fosforilação , Transdução de Sinais
5.
Anal Chem ; 93(5): 3026-3034, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33522225

RESUMO

Affinity purification coupled to mass spectrometry (AP-MS) is a popular approach for deciphering the architecture of protein interaction networks. Protein lysates (100 µg) are typically required for multistep sample processing in large volumes, which often causes sample loss and reduces the MS analysis sensitivity. Herein, we reported a fully integrated spintip-based AP-MS technology, termed FISAP, for multiplexed and sensitive interactome profiling. The FISAP device can be easily employed for routine use by introducing AP beads into a C18 StageTip. Taking advantage of the switchable functionalization of the C18 matrix by sodium dodecyl sulfate, all the sample preparation steps encompassing peptide or antibody-based AP, reduction, alkylation, tryptic digestion, tandem mass tag (TMT) labeling, and desalting can be performed in a single tip with a benchtop centrifuge in 4 h. Using a biotinylated tyrosine phosphorylated (pTyr) peptide as an affinity ligand, we mapped the pTyr-dependent interactome of the pY191 motif on the immune receptor CD28 cytoplasmic domain. When processing 50 µg of protein lysates, FISAP showed a comparable interactome identification performance but better quantification performance and lower background interference compared to the traditional tube-based method. Furthermore, a cost-effective on-column TMT labeling protocol was established and integrated into the FISAP pipeline with increased sensitivity. Compared to the tube-based method, the usage of a synthetic peptide probe and a TMT reagent was both reduced by 20 times. As low as 1 µg of protein lysates could be applied for interactome profiling. Finally, we expanded the applicability of the FISAP technology to epitope tag-based AP-MS for profiling the ILK/PINCH/Parvin complex using 100 times less protein lysate than a previous report. Collectively, FISAP is an easy-to-use and sensitive technology for quantitatively profiling protein complexes when the starting material and affinity reagent are the limitation, especially for applications in biomedical research and chemical biology.


Assuntos
Proteínas , Proteômica , Espectrometria de Massas , Manejo de Espécimes , Tecnologia
6.
Anal Chem ; 92(13): 8933-8942, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32539344

RESUMO

Phosphotyrosine (pTyr) signaling complexes are important resources of biomarkers and drug targets which often need to be profiled with enough throughput. Current profiling approaches are not feasible to meet this need due to either biased profiling by antibody-based detection or low throughput by traditional affinity purification-mass spectrometry approach (AP-MS), as exemplified by our previously developed photo-pTyr-scaffold approach. To address these limitations, we developed a 96-well microplate-based sample preparation and fast data independent proteomic analysis workflow. By assembling the photo-pTyr-scaffold probe into a 96-well microplate, we achieved steric hindrance-free photoaffinity capture of pTyr signaling complexes, selective enrichment under denaturing conditions, and efficient in-well digestion in a fully integrated manner. EGFR signaling complex proteins could be efficiently captured and identified by using 300 times less cell lysate and 100 times less photo-pTyr-scaffold probe as compared with our previous approach operated in an Eppendorf tube. Furthermore, the lifetime of the photo-pTyr-scaffold probe in a 96-well microplate was significantly extended from 1 week up to 1 month. More importantly, by combining with high-flow nano LC separation and data independent acquisition on the Q Exactive HF-X mass spectrometer, LC-MS time could be significantly reduced to only 35 min per sample without increasing sample loading amount and compromising identification and quantification performance. This new high-throughput proteomic approach allowed us to rapidly and reproducibly profile dynamic pTyr signaling complexes with EGF stimulation at five time points and EGFR inhibitor treatment at five different concentrations. We are therefore optimized for its generic application in biomarkers discovery and drug screening in a high-throughput fashion.


Assuntos
Fosfotirosina/análise , Proteômica/métodos , Cromatografia Líquida de Alta Pressão , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Células HeLa , Humanos , Espectrometria de Massas , Fosfotirosina/metabolismo , Análise Serial de Proteínas , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Transdução de Sinais
7.
Chirality ; 29(7): 369-375, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28418612

RESUMO

Chiral diamine catalysts 11a-e derived from α,α-diphenyl prolinol were prepared and successfully applied to the Michael addition of aromatic oximes to α,ß-unsaturated aldehydes in mediocre to good yields (up to 78%) and good to high enantioselectivities (up to 93% ee).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA