Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 133159, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880459

RESUMO

Soft ionic conductors exhibit immense potential for applications in soft ionotronics, including ionic skin, human-machine interface, and soft luminescent device. Nevertheless, the majority of ionogel-based soft ionic conductors are plagued by issues such as freezing, evaporation, liquid leakage, and inadequate self-healing capabilities, thereby constraining their usability in complex environments. In this study, we present a novel strategy for fabricating conductive ionogels through the proportionally mixing cationic guar gum (CGG), water, 1-butyl-3-methylimidazolium chloride (BmimCl)/glycerol eutectic-based ionic liquid, and poly(3,4-ethylenedioxythiophene)/lignosulfonate (PEDOT/LS). The resultant benefits from strong hydrogen bonding and electrostatic interactions among its constituents, endowing it with an ultrafast self-healing capability (merely 30 s) while sustaining high electrical conductivity (~16.5 mS cm-1). Moreover, it demonstrates exceptional water retention (62 % over 10 days), wide temperature tolerance (-20 to 60 °C), and injectability. A wearable sensor fabricated from this ionogel displayed remarkable sensitivity (gauge factor = 17.75) and a rapid response to variations in strain, pressure, and temperature, coupled with both long-term stability and wide working temperature range. These attributes underscore its potential for applications in healthcare devices and flexible electronics.

2.
Int J Biol Macromol ; 266(Pt 2): 131129, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574640

RESUMO

In this study, we propose a non - toxic and low-cost fabrication of cellulose-based eutectogel through the ZnCl2/H2O/H3PO4 deep eutectic solvent (DES) to dissolve cellulose followed by free-radical polymerization of acrylamide. Particularly, the introduction of cellulose enhances the mechanical properties of eutectogels while eliminating the environmental concerns of the traditional nanocellulose fabrication process. Owing to the dynamic transfer of ions in the eutectogel network, the prepared eutectogels exhibit adjustable conductivity (0.9- 1.37 Sm-1, 15 °C) and stretching sensitivity (Gauge factor = 5.4). The resulting DES - cellulose-based eutectogels (DCEs) exhibited ultra stretchability (4086 %), high toughness (261.3 MJ/m3), excellent ionic conductivity (1.64 Sm-1, 20 °C), high transparency (>85 %), outstanding antifreezing performance (<-80 °C), and other comprehensive characteristics. The DCEs had been proven to have multiple sensitivities to external stimuli, like temperature, strain, and pressure. As a result, the DCEs can be assembled into multifunctional sensors. Moreover, this work also demonstrated the satisfactory performance of DCEs in flexible electroluminescent devices. The low cost and high efficiency made the preparation method of this experiment an efficient strategy for developing high-performance cellulose-based eutectogels, which would greatly promote the application of such materials in areas such as artificial skin for soft robots and other wearable devices.


Assuntos
Celulose , Condutividade Elétrica , Celulose/química , Géis/química , Congelamento , Dispositivos Eletrônicos Vestíveis
3.
Polymers (Basel) ; 16(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674997

RESUMO

In the present study, an environmentally friendly oil- and water-resistant paper was developed using a holo-lignocellulosic nanofibril (LCNF)-based composite coating. The LCNF was prepared from wheat straw using a biomechanical method. Characterizations of oil- and water-resistant coated paper and the effect of LCNF content on the performance of the coated paper were confirmed by combining contact angle analysis, Cobb 300s, and mechanical performance tests. The results show that the barrier performance and mechanical strength of the coated paper were greatly improved with the increase of LCNF content. The contact angle of oil and water of coated paper containing 50% LCNF were 69° and 78°, respectively, while the contact angle of oil and water of the base paper were only 30° and 20°, respectively. Cobb 300s values reduced from 110 g/m2 to 30 g/m2 when the LCNF content increased from 50% to 90%. Moreover, under the coating amount of 20 g/m2, the tensile strength of the coating paper was 0.980 KN/m, an increase of 10.11% compared with the base paper. The bursting strength reached 701.930 KPa, which was 10.75% higher than the base paper. In short, it is feasible to prepare LCNF from wheat straw, and apply it to produce water-proof and oil-proof paper. The water-proof and oil-proof paper developed in this study not only offers a novel approach to addressing white pollution but also presents a new research avenue for exploring the potential applications of agricultural waste.

4.
Small ; : e2309651, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530065

RESUMO

The scientific community is pursuing significant efforts worldwide to develop environmentally viable film materials from biomass, particularly transparent, high-performance regenerated cellulose (RC) films, to replace traditional plastics. However, the inferior mechanical performance and hydrophilic nature of RC films are generally not suitable for use as a substitute for plastics in practical applications. Herein, lignin homogenization is used to synthesize high-performance composite films. The esterified lignin nanoparticles (ELNPs) with dispersible and binding advantages are prepared through esterification and nanometrization. In the presence of ELNPs, RC films exhibit a higher tensile strength (110.4 MPa), hydrophobic nature (103.6° water contact angle, 36.6% water absorption at 120 min, and 1.127 × 10-12 g cm cm-2 s-1 Pa-1 water vapor permeability), and exciting optical properties (high visible and low ultraviolet transmittance). The films further display antioxidant activity, oxygen barrier ability, and thermostability. The films completely biodegrade at 12 and 30% soil moisture. Overall, this study offers new insights into lignin valorization and regenerated cellulose composite films as novel bioplastic materials.

5.
Int J Biol Macromol ; 265(Pt 1): 130532, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431009

RESUMO

As a bio-based material, microcrystalline cellulose (MCC) has been applied in many fields including pharmaceuticals, foods, and cosmetics in recent years. However, traditional preparation methods of MCC are facing many challenges due to economic and eco-environmental issues. In this study, softwood dissolved pulp was sieved to long fiber (LF) and short fiber (SF), and subsequently to prepare LF-MCC and SF-MCC by hydrochloric acid hydrolysis at different acid dosages (3-7 wt%), reaction times (30-90 min), and temperatures (75-95 °C). The as-obtained MCC products were compared in terms of morphology, size, crystallinity, and chemical structure. The results indicated that the crystallinity and yield of LF-MCC were high, with maximum values of 78.41 % and 98.68 %, respectively. The particle size distribution of SF-MCC was more uniform in the range of 20-80 µm, with a maximum of 59.44 % at 20-80 µm occupancy proportion. Moreover, SF-MCC had a typical rod-like shape and larger surface area as well as better thermal behavior than LF-MCC. When LF-MCC and SF-MCC were used as fillers in the production of ibuprofen tablets, the tablets added with LF-MCC exhibited higher hardness, friability, dissolution rate, and shorter disintegration time. Therefore, this work is very beneficial for the preparation and application of MCC.


Assuntos
Celulose , Ibuprofeno , Celulose/química , Dureza , Comprimidos
6.
Int J Biol Macromol ; 259(Pt 1): 129186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184047

RESUMO

Lignocellulosic biomass has emerged as a promising alternative with sustainable advantages for the production of a wide range of renewable products and value-added chemicals. In this study, a pretreatment strategy that use a fully recyclable acid hydrotrope (p-TsOH aqueous solution) to extract lignin and employ glyoxylic acid (GA) to stabilize lignin was proposed for biomass valorization toward multipurpose fractionation. 83.0 % of lignin was dissolved out by p-TsOH hydrotrope (80 wt%) with GA addition to form GA-stabilized product at 80 o C for 15 min. The stabilized lignin was subsequently used as an additive in the preparation of lignin-based suncream. Notably, the incorporation of 4 wt% lignin nanospheres into an SPF15 sunscreen yielded a measured SPF of 59.94. Furthermore, the depolymerization of uncondensed lignin into aromatic monomers yielded a high lignin-oil yield of 84.2 %. Additionally, direct heating of the pretreatment liquor facilitated the conversion of monosaccharides into furfural, achieving a desired yield of 53.7 % without the addition of any acid catalyst. The pretreatment also enhanced the enzymatic hydrolysis of glucan, resulting in a saccharification yield of 98.4 %. Moreover, short-term ultrasonication of the pretreated substrate yielded pulp suitable for papermaking. Incorporating 15 wt% fibers into the produced paper sheets led to a 5.3 % increase in tear index and a 25.4 % increase in tensile index. This study presents a viable pretreatment strategy for the multipurpose fractionation of lignocellulosic biomass, offering potential avenues for biomass valorization.


Assuntos
Lignina , Monossacarídeos , Lignina/metabolismo , Biomassa , Hidrólise , Fracionamento Químico
7.
Polymers (Basel) ; 16(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257000

RESUMO

Industrial lignin, a by-product of pulping for papermaking fibers or of second-generation ethanol production, is primarily served as a low-grade combustible energy source. The fabrication of high-value-added functional materials with industrial lignin is still a challenge. Herein, a three-dimensional hierarchical lignin-derived porous carbon (HLPC) was prepared with lignosulfonate as the carbon source and MgCO3 as the template. The uniform mixing of precursor and template agent resulted in the construction of a three-dimensional hierarchical porous structure. HLPC presented excellent electromagnetic wave (EMW) absorption performance. With a low filler content of 7 wt%, HLPC showed a minimum reflection loss (RL) value of -41.8 dB (1.7 mm, 13.8 GHz), and a maximum effective absorption bandwidth (EAB) of 4.53 GHz (1.6 mm). In addition, the enhancement mechanism of HLPC for EMW absorption was also explored through comparing the morphology and electromagnetic parameters of lignin-derived carbon (LC) and lignin-derived porous carbon (LPC). The three-dimensional hierarchical porous structure endowed the carbon with a high pore volume, resulting in an abundant gas-solid interface between air and carbon for interfacial polarization. This structure also provided conductive networks for conduction loss. This work offers a strategy to synthesize biomass-based carbon for high-performance EMW absorption.

8.
Int J Biol Macromol ; 260(Pt 2): 129587, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253157

RESUMO

Lignocellulosic biomass exhibits a promising potential for production of carbon materials. Nitrogen and phosphorus co-doped carbon quantum dots (N,P-CQDs) were fabricated via (NH4)2HPO4 assisted hydrothermal treatment of cellulose pulp fibers. The as-prepared N,P-CQDs were characterized by HRTEM, FTIR, fluorescence and UV-vis, and then incorporated into g-C3N4 (CN) through sonication and liquid deposition, forming N,P-CQDs/sonication treated g-C3N4 (C-SCN) composites, which were then explored as photocatalysts. The photocatalytic ability of C-SCN towards model lignin was further analyzed. The results showed that, the fluorescence intensity and photoluminescence performance of N,P-CQDs were much higher than that of CQDs; the heterojunction was successfully constructed between the composites of N,P-CQDs and SCN; the incorporation of N,P-CQDs enhanced the visible light absorption, but reduced the band gap of the composite heterojunction; the resultant photocatalysts exhibited a good photocatalytic ability of model lignin via catalyze the fracture of ß-O-4' ether bond and CC bond, i.e., the photocatalytic degradation ratio reached up to 95.5 %; and the photocatalytic reaction generated some valuable organics such as phenyl formate, benzaldehyde, and benzoic acid. This study would promote the high value-added utilization of lignocellulosic resources especially in the transformation of lignin, conforming the concept of sustainable development.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Lignina , Celulose , Pontos Quânticos/química , Nitrogênio
9.
Int J Biol Macromol ; 257(Pt 1): 128434, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043655

RESUMO

Ion conductors offer great potential for diverse electric applications. However, most of the ion conductors were fabricated from non - degradable petroleum-based polymers with non or low biodegradability, which inevitably leads to resource depletion and waste accumulation. Fabricating ion conductors based on renewable, and sustainable materials is highly desirable and valuable. Herein, a series of eutectogels were designed through dual-dynamic-bond cross-linking among ferric iron (Fe3+), protocatechualdehyde (PA), and chitosan (CS) in 1 - allyl-3 - methylimidazole chloride ionic liquid/urea (AmimCl/urea) eutectic-based ionic liquid. Due to the presence of AmimCl/urea eutectic-based ionic liquid, the obtained CS - PA@Fe eutectogels showed excellent ionic conductivity, superior anti-freezing properties that could maintain flexibility and high electrical properties at -20 °C. Dual-dynamic-bond cross-linking of catechol-Fe coordinate and dynamic Schiff base bonds equip CS - PA@Fe eutectogels with excellent injectable, and self-healing abilities. Additionally, due to the presence of phenolic hydroxyl groups of PA, the obtained CS - PA@Fe eutectogels present good adhesiveness. Based on the CS - PA@Fe eutectogels, multifunctional flexible strain sensors with high sensitivity, stability, as well as rapid response speed at wide operating temperature ranges were successfully fabricated. Thus, this study offers a promising strategy for fabricating naturally occurring biopolymers based eutectogels, which show great potential as high-performance flexible strain sensors for next-generation wearable electronic devices.


Assuntos
Benzaldeídos , Catecóis , Quitosana , Líquidos Iônicos , Prunella , Esfingosina/análogos & derivados , Adesivos , Cimentos de Resina , Bases de Schiff , Condutividade Elétrica , Ureia , Hidrogéis
10.
Int J Biol Macromol ; 253(Pt 7): 127353, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37839592

RESUMO

As a green and renewable nanomaterial, cellulose nanocrystals (CNC) have received numerous attention due to the unique structural features and superior physicochemical properties. Conventionally, CNC was isolated from lignocellulosic biomass mostly depending on sulfuric or hydrochloric acid hydrolysis. Although this approach is effective, some critical issues such as severe equipment corrosion, excessive cellulose degradation, serious environmental pollution, and large water usage are inevitable. Fortunately, solid acid hydrolysis is emerging as an economical and sustainable CNC production technique and has achieved considerable progress in recent years. Herein, the preparation of CNC by solid acid hydrolysis was summarized systematically, including organic solid acids (citric, maleic, oxalic, tartaric, p-toluenesulfonic acid) and inorganic solid acids (phosphotungstic, phosphoric, and Lewis acid). The advantages and disadvantages of organic and inorganic solid acid hydrolysis methods were evaluated comprehensively. Finally, the challenges and opportunities in the later exploitation and application of solid acid hydrolysis to prepare CNC in the industrial context are discussed. Considering the future development of this technology in the large-scale CNC production, much more efforts should be made in lowering CNC processing cost, fabricating high-solid-content and re-dispersible CNC, developing value-added applications of CNC, and techno-economic analysis and life cycle assessment on the whole process.


Assuntos
Celulose , Nanopartículas , Celulose/química , Hidrólise , Água , Nanopartículas/química , Ácidos de Lewis
11.
Carbohydr Polym ; 321: 121310, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739507

RESUMO

Self-powered sensors that do not require external power sources are crucial for next-generation wearable electronics. As environment-friendly ionic thermoelectric hydrogels can continuously convert the low-grade heat of human skin into electricity, they can be used in intelligent human-computer interaction applications. However, their low thermoelectric output power, cycling stability, and sensitivity limit their practical applications. This paper reports a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized carboxylated bacterial cellulose (TOBC) coordination double-network ionic thermoelectric hydrogel with lithium bis(trifluoromethane) sulfonimide (LiTFSI) as an ion provider for thermodiffusion, as LiTFSI exhibits excellent thermoelectric properties with a maximum power output of up to 538 nW at a temperature difference of 20 K. The interactions between the ions and the hydrogel matrix promote the selective transport of conducting ionic ions, producing a high Seebeck coefficient of 11.53 mV K-1. Hydrogen bonding within the polyacrylamide (PAAm) network and interactions within the borate ester bond within the TOBC confer excellent mechanical properties to the hydrogel such that the stress value at a tensile deformation of 3100 % is reaches 0.85 MPa. The combination of the high ionic thermovoltage and excellent mechanical properties ionic thermoelectric hydrogels provides an effective solution for the design and application of self-powered sensors based on hydrogels.


Assuntos
Ácidos Carboxílicos , Ésteres , Humanos , Celulose , Hidrogéis , Íons
12.
Int J Biol Macromol ; 245: 125227, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290548

RESUMO

Nowadays, nanocellulose production processes with numerous merits of green, eco-friendly, and cost-effective are in urgent need. Acidic deep eutectic solvent (ADES), as an emerging green solvent, has been widely applied in the preparation of nanocellulose over the past few years, owing to its unique advantages, including non-toxicity, low cost, easy synthesis, recyclability, and biodegradability. At present, several studies have explored the effectiveness of ADESs in nanocellulose production, particularly those based on choline chloride (ChCl) and carboxylic acids. Various acidic deep eutectic solvents have been employed, with representative ones such as ChCl-oxalic/lactic/formic/acetic/citric/maleic/levulinic/tartaric acid. Herein, we comprehensively reviewed the latest progress of these ADESs, focusing on the treatment procedures and key superiorities. In addition, the challenges and outlooks of ChCl/carboxylic acids-based DESs implementation in the fabrication of nanocellulose were discussed. Finally, some suggestions were proposed to advance the industrialization of nanocellulose, which would help for the roadmap of sustainable and large-scale production of nanocellulose.


Assuntos
Ácidos Carboxílicos , Solventes Eutéticos Profundos , Colina , Solventes , Ácido Cítrico
13.
Carbohydr Polym ; 313: 120898, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182981

RESUMO

Huge electronic wastes motivated the flourishing of biodegradable electrically conductive cellulosic paper-based functional materials as flexible wearable devices. However, the relatively low sensitivity and unstable output in combination with poor wet strength under high moisture circumstances impeded the practical application. Herein, a superhydrophobic cellulosic paper with ultrahigh sensitivity was proposed by innovatively employing ionic sodium carboxymethyl cellulose (CMC) as bridge to reinforce the interfacial interaction between carbon black (CB) and multilayer graphene (MG) and SiO2 nanoparticles as superhydrophobic layer. The resultant paper-based (PB) sensor displayed excellent strain sensing behaviors, wide working range (-1.0 %-1.0 %), ultrahigh sensitivity (gauge factor, GF = 70.2), and satisfied durability (>10,000 cycles). Moreover, the superhydrophobic surface offered well waterproof and self-cleaning properties, even stable running data without encapsulation under extremely high moisture conditions. Impressively, when the fabricated PB sensor was applied for electronic-skin (E-skin), the signal capture of spatial strain of E-skin upon bodily motion was breezily achieved. Thus, our work not only provides a new pathway for reinforcing the interfacial interaction of electrically conductive carbonaceous materials, but also promises a category of unprecedentedly superhydrophobic cellulosic paper-based strain sensors with ultra-sensitivity in human-machine interfaces field.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 298: 122775, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150073

RESUMO

The biological microenvironment includes important parameters such as viscosity, polarity, temperature, oxygen content and pH. In particular, abnormal cell viscosity is associated with the development of major diseases. Sulphur dioxide (SO2) serves not only as an essential atmospheric pollutant but also an influential signalling molecule in biological cells, predisposing individuals to increased respiratory disease. In this work, we designed and synthesized a novel fluorescent probe CouCN-V&S with dual response to micro environmental viscosity and SO2. The probe monitored viscosity and SO2 separately through dual emission channels with a difference of 135 nm. The probe responded sensitively to SO2 (<1s) and exhibited satisfactory immunity to interference and pH stability. The probe was successfully applied to imaging cellular, intra-zebrafish viscosity and SO2 changes. Interestingly, we took onion epidermal cells as model and explored the capability of probe CouCN-V&S to image SO2 in plant cells for the first time.


Assuntos
Colorimetria , Cebolas , Humanos , Animais , Colorimetria/métodos , Peixe-Zebra , Viscosidade , Diagnóstico por Imagem , Células HeLa , Corantes Fluorescentes/química , Dióxido de Enxofre
15.
Int J Biol Macromol ; 243: 124828, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217052

RESUMO

2D Ti3C2Tx MXene is an ideal material for fabricating supercapacitor electrodes due to its excellent physical-chemical properties. However, the inherent self-stacking, narrow interlayer spacing, and low general mechanical strength limit its application in flexible supercapacitors. Herein, facile structural engineering strategies by drying (vacuum drying, freeze drying, and spin drying) were proposed to fabricate 3D high-performance Ti3C2Tx/sulfated cellulose nanofibril (SCNF) self-supporting film supercapacitor electrodes. Compared with other composite films, the freeze-dried Ti3C2Tx/SCNF composite film exhibited a looser interlayer structure with more space which was conducive to charge storage and ion transport in the electrolyte. Therefore, the freeze-dried Ti3C2Tx/SCNF composite film exhibited a higher specific capacitance (220 F/g) compared to the vacuum-dried Ti3C2Tx/SCNF composite film (191 F/g) and the spin-dried Ti3C2Tx/SCNF composite film (211 F/g). After 5000 cycles, the capacitance retention rate of the freeze-dried Ti3C2Tx/SCNF film electrode was close to 100 %, showing excellent cycle performance. Meanwhile, the tensile strength of freeze-dried Ti3C2Tx/SCNF composite film (13.7 MPa) was much greater than that of the pure film (7.4 MPa). This work demonstrated a facile strategy for control of Ti3C2Tx/SCNF composite film interlayer structure by drying for fabricating well-designed structured flexible and free-standing supercapacitor electrodes.


Assuntos
Sulfatos , Titânio , Celulose , Eletrodos
16.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987229

RESUMO

Plastics displaying many merits have been indispensable in daily life and they still maintain the strong momentum of development. Nevertheless, petroleum-based plastics possess a stable polymer structure and most of them are incinerated or accumulated in the environment, leading to devastating impacts on our ecology system. Thus, exploiting renewable and biodegradable materials to substitute or replace these traditional petroleum-derived plastics is an urgent and important task. In this work, renewable and biodegradable all-biomass cellulose/grape-seed-extract (GSEs) composite films with high transparency and anti-ultraviolet performance were fabricated successfully from pretreated old cotton textiles (P-OCTs) using a relatively simple, green, yet cost-effective, approach. It is proved that the obtained cellulose/GSEs composite films exhibit good ultraviolet shielding performance without sacrificing their transparency, and their UV-A and UV-B blocking values can reach as high as nearly 100%, indicating the good UV-blocking performance of GSEs. Meanwhile, the cellulose/GSEs film show higher thermal stability and water vapor transmission rate (WVTR) than most common plastics. Moreover, the mechanical property of the cellulose/GSEs film can be adjusted by the addition of a plasticizer. Briefly, the transparent all-biomass cellulose/grape-seed-extracts composite films with high anti-ultraviolet capacity were manufactured successfully and they can be used as potential materials in the packaging field.

17.
Chem Asian J ; 18(11): e202300038, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36994718

RESUMO

Here, π-Extended BTD derivatives were successfully synthesized by Heck coupling reaction, which exhibited the the advantages of simplicity and efficiency, wild substrate scope, easily available substrates and high yield. The fluorescent probe PEG-BTDAr targeting LDs was successfully prepared by the nucleophilic substitution reaction between the Heck coupling reaction product 3 h and Amino polyethylene glycol monomethyl ether (Mn=2000). PEG-BTDAr exhibited the advantages of high selectivity, good stability and pH resistance. The use of PEG as a substrate gave PEG-BTDAr good biocompatibility. It was worth mentioning that PEG-BTDAr could not only track LDs in cells under different physiological conditions, but also distinguish between living and dead cells in biological systems.


Assuntos
Diagnóstico por Imagem , Polietilenoglicóis , Polietilenoglicóis/química
18.
Int J Biol Macromol ; 231: 123244, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639084

RESUMO

A wide range of applications are available for kraft lignin (KL). However, the dark color and wide size distribution of KL make it challenging to use in cosmetics and nanoparticle preparation. In this study, we fractionated KL from a paper-making enterprise using ultrafiltration membrane fractionation, and obtained four kinds of lignin with different molecular weights, namely ultrafiltration lignin (UL). Following that, lignin nanoparticles (ULNPs) were formed by self-assembly from four types of UL. Analyzing the UL and ULNP properties, the low molecular weight lignin, such as ULA, exhibited good antioxidant properties (89.47 %, 5 mg/mL), high brightness (ISO% = 7.55), high L⁎ value (L⁎ = 72.3) and low polydispersity index (PDI = 1.41). The ULNP showed a narrow size distribution (0.8-1.4 m) and high dispersibility in sunscreen. When ULNP was added to sunscreen with 5 % load, its sun protection factor (SPF) value increased from 14.93 to 63.74. Therefore, this study offered an effective way for the comprehensive utilization of pulping waste KL.


Assuntos
Nanopartículas , Protetores Solares , Lignina , Ultrafiltração , Fator de Proteção Solar
19.
Int J Biol Macromol ; 229: 295-304, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36592855

RESUMO

Robust biopolymer-based composite film with multifunctional performances significantly contributes to the packaging field. Herein, we proposed a sort of carboxymethyl cellulose (CMC) based composite film via incorporating versatile zeolitic imidazolate framework (ZIF) materials. Compared to pristine CMC film, the OTR, WVTR, and tensile strength of CMC/ZIF composite film with 1 wt ‰ Zn/Co-ZIF were improved from 64.89 cm3*µm/(m2*d*kPa), 1579.21 g/(m2*24h) and 16.9 MPa to 20.79 cm3*µm/(m2*d*kPa), 1209.58 g/(m2*24h) and 70.1 MPa, respectively. Notably, owing to the reduced band gap and intrinsic chemical and thermal stability of Zn/Co-ZIF, the fabricated Zn/Co-ZIF/CMC composite film presented well UV protection capability within the whole UV region and excellent UV-blocking durability after being exposed to UV-light at 365 nm for 12 h. In practice, the photocatalytic degradation of RhB solutions under UV light could be effectively suppressed when using Zn/Co-ZIF/CMC film as UV protection layer. Our findings proposed the potential application of these versatile ZIF materials as functional nanofiller within biopolymer substances for UV protection and transparent packaging area.


Assuntos
Carboximetilcelulose Sódica , Zeolitas , Movimento Celular , Embalagem de Medicamentos , Embalagem de Produtos , Transporte Proteico
20.
Int J Biol Macromol ; 230: 123122, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603721

RESUMO

Lignin has been regarded as a potential natural sun screening agent. However, the dark color of traditional industrial lignin hinders its application in the field of skincare. In this study, a green and facile approach was developed to extract light-colored lignin. p-Toluenesulfonic acid (p-TsOH) was used to separate lignin and fibers from Kenaf stalks. During the isolation of lignin, formaldehyde was added to preserve the ß-O-4 bonds of lignins in the form of stable acetals. The obtained lignin was further employed to prepare nanoparticles (LNPs) as sunscreen additives. After adding 4 wt% LNPs, the SPF values of the cream increased from 7.05 to 27.84. The residual fibers from the Kenaf stalks can be utilized for papermaking as the raw materials. by mixing them with softwood pulp to reduce the consumption of commercial pulp. With the addition of 5 wt% residual fibers in commercial softwood pulp, the produced paper showed better mechanical properties. The ring crush strength index and tear index of the samples increased from 2.49 N·m/g and 4.63 mN·m2/g to 2.62 N·m/g and 4.75 mN·m2/g, respectively. This study paved a way for the comprehensive utilization of Kenaf stalks towards not only papermaking but also daily chemical products.


Assuntos
Hibiscus , Lignina , Lignina/química , Protetores Solares/química , Hibiscus/química , Alimentos , Indústrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA