Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930585

RESUMO

The widespread dissemination of carbapenem-resistant Klebsiella pneumoniae (CRKP) and its drug resistance transfer poses a global public health threat. While previous studies outlined CRKP's drug resistance mechanism, there is limited research on strategies inhibiting CRKP drug resistance spread. This study investigates the potential of Bifidobacterium longum (B. longum) FB1-1, a probiotic, in curbing the spread of drug resistance among CRKP by evaluating its cell-free supernatant (CFS) for antibacterial activity. Evaluating the inhibitory effect of FB1-1 CFS on CRKP drug resistance spread involved analyzing its impact on drug resistance and virulence gene expression; drug resistance plasmid transfer FB1-1 CFS exhibited an MIC range of 125 µL/mL against CRKP. After eight hours of co-culture, CFS achieved a 96% and 100% sterilization rate at two and four times the MIC, respectively. At sub-inhibitory concentrations (1/2× MIC), FB1-1 CFS reduced the expression of the bla_KPC gene, which is pivotal for carbapenem resistance, by up to 62.13% across different CRKP strains. Additionally, it markedly suppressed the expression of the uge gene, a key virulence factor, by up to 91%, and the fim_H gene, essential for bacterial adhesion, by up to 53.4%. Our study primarily focuses on determining the inhibitory effect of FB1-1 CFS on CRKP strains harboring the bla_KPC gene, which is a critical resistance determinant in CRKP. Furthermore, FB1-1 CFS demonstrated the ability to inhibit the transfer of drug resistance plasmids among CRKP strains, thus limiting the horizontal spread of resistance genes. This study highlights FB1-1 CFS's inhibitory effect on CRKP drug resistance spread, particularly in strains carrying the bla_KPC gene, thus offering a novel idea and theoretical foundation for developing antibacterial drugs targeting CRKP resistance.

2.
J Hazard Mater ; 451: 131127, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871463

RESUMO

The biotoxins with high toxicity have the potential to be manufactured into biochemical weapons, seriously threatening international public security. Developing robust and applicable sample pretreatment platforms and reliable quantification methods has been recognized as the most promising and practical approach to solving these problems. Through the integration of the hollow-structured microporous organic networks (HMONs) as the imprinting carriers, we proposed a molecular imprinting platform (HMON@MIP) with enhanced adsorption performance in terms of specificity, imprinting cavity density as well as adsorption capacity. The HMONs core of MIPs provided a hydrophobic surface that enhanced the adsorption of biotoxin template molecules during the imprinting process, resulting in an increased imprinting cavity density. The HMON@MIP adsorption platform could produce a series of MIP adsorbents by changing the biotoxin template, such as aflatoxin and sterigmatocystin, and showed promising generalizability. The limits of detection (LOD) of the HMON@MIP-based preconcentration method for AFT B1 and ST were 4.4 and 6.7 ng L-1, respectively, and the method was applicable to food sample with satisfied recoveries of 81.2-95.1%. And the specific recognition and adsorption sites left on HMON@MIP by the imprinting process can achieve outstanding selectivity for AFT B1 and ST. The developed imprinting platforms hold great potential for application in the identification and determination of various food hazards in complex food sample matrices and contribute to precise food safety inspection.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Aflatoxina B1 , Esterigmatocistina , Extração em Fase Sólida/métodos , Polímeros/química , Impressão Molecular/métodos , Adsorção
3.
Mikrochim Acta ; 189(9): 354, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36031664

RESUMO

A straightforward, largely instrument-free, smartphone-based analytical strategy for hexavalent chromium and lysine (Lys) on-site detection via exploitation of dual-emission carbon quantum dots (DECQDs) has been demonstrated. DECQDs show dual-emission peaks at 439 and 630 nm with the excitation at 375 nm. As a dual-mode detection probe, the fluorescence and ultraviolet adsorption spectra of DECQDs vary with hexavalent chromium concentrations. Most importantly, Lys can restore the fluorescence of the hexavalent chromium added DECQD nanoprobe and change the color of the probe under natural light. At the same time, based on the participation of smartphones, the prepared DECQD probes favor the establishment of visual smart sensors that can also be used for the in-situ detection of targets. The on-site quantitative analysis exhibited a linear range of 5.3-320 µM with a detection limit of 1.6 µM towards Cr(VI) and the differentiation of Lys variation from 1 to 75 mM with a detection limit of 0.3 mM. The probe has been applied for the first time to enable vision-based colorimetric in complex samples such as water, milk and egg. The recoveries of Cr(VI) and Lys in real samples were between 90 and 104%, and the relative standard deviation (RSD) was as low as 0.4%. This work offers new perspectives for fundamental understanding and new design of functional luminescent materials that are applicable for food-safety and rapid and intelligent inspection. A straightforward, large instrument-free, smartphone-based analytical strategy with dual-emission carbon quantum dots was developed for hexavalent chromium and Lys on-site detection via fluorescent and colorimetric twofold readout measure.


Assuntos
Pontos Quânticos , Carbono , Cromo , Lisina , Smartphone
4.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408754

RESUMO

Functional nanoprobes which detect specific food hazards quickly and simply are still in high demand in the field of food-safety inspection research. In the present work, a dual-emission metal-organic framework-based ratiometric fluorescence probe was integrated to detect Cu2+ and Pb2+ with rapidness and ease. Specifically, quantum dots (QDs) and carbon quantum dots (CQDs) were successfully embedded into zeolitic imidazolate framework-67 (ZIF-67) to function as a novel ratiometric fluorescent sensing composite. The ratiometric fluorescence signal of CQDs/QDs@ZIF-67 was significantly aligned with the concentration of metal ions to give an extremely low detection limit of 0.3324 nM. The highly sensitive and selective CQDs/QDs@ZIF-67 composite showed potential for the rapid and cost-effective detection of two metal ions.


Assuntos
Estruturas Metalorgânicas , Pontos Quânticos , Carbono , Corantes Fluorescentes , Íons , Limite de Detecção
5.
Toxins (Basel) ; 14(2)2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35202164

RESUMO

Aflatoxin (AFT) contamination, commonly in foods and grains with extremely low content while high toxicity, has caused serious economic and health problems worldwide. Now researchers are making an effort to develop nanomaterials with remarkable adsorption capacity for the identification, determination and regulation of AFT. Herein, we constructed a novel hollow-structured microporous organic networks (HMONs) material. On the basis of Fe3O4@MOF@MON, hydrofluoric acid (HF) was introduced to remove the transferable metal organic framework (MOF) to give hollow MON structures. Compared to the original Fe3O4@MOF@MON, HMON showed improved surface area and typical hollow cavities, thus increasing the adsorption capacity. More importantly, AFT is a hydrophobic substance, and our constructed HMON had a higher water contact angle, greatly enhancing the adsorption affinity. From that, the solid phase extraction (SPE-HPLC) method developed based on HMONs was applied to analyze four kinds of actual samples, with satisfied recoveries of 85-98%. This work provided a specific and sensitive method for the identification and determination of AFT in the food matrix and demonstrated the great potential of HMONs in the field of the identification and control of mycotoxins.


Assuntos
Adsorção , Aflatoxinas/análise , Contaminação de Alimentos/análise , Análise de Perigos e Pontos Críticos de Controle/métodos , Estruturas Metalorgânicas/química , Nanoestruturas/química , Extração em Fase Sólida/métodos , Produtos Agrícolas/química , Produtos Agrícolas/microbiologia , Milhetes/química , Milhetes/microbiologia , Oryza/química , Oryza/microbiologia , Glycine max/química , Glycine max/microbiologia , Zea mays/química , Zea mays/microbiologia
6.
J Agric Food Chem ; 68(43): 12028-12038, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33052690

RESUMO

Iron deficiency (ID) caused by blood loss and/or reduced iron absorption is a serious problem influencing health in inflammatory bowel disease (IBD). However, traditional iron supplements may fail to meet no side effect demands for ID of IBD; thus, a new iron supplementation is highly desired to be developed. Herein, for the first time, probiotic Lactobacillus alimentarius NKU556 with an iron-enriching ability was screened from Chinese traditional fermented food then employed to intervene DSS-induced colitis with bioluminescence tracing in mice. As expected, oral administration with NKU556-Fe can remarkably enhance the expression of tight junction proteins and effectively reduce the pro-inflammatory cytokines as well as the oxidative stress on DSS-induced colitis in mice. Meanwhile, in comparison with the FeSO4 group, the intake of NKU556-Fe could suppress the expression of hepcidin derived from the liver and reduce the degradation of FPN1, thereby leading to the increase in the iron absorption of colitis in mice. According to the bioluminescence result, it was believed that the beneficial effects of oral administration with NKU556/NKU556-Fe on DSS-induced colitis in mice were hardly related to its metabolites but associated with its own function. These results concluded that the oral administration of NKU556-Fe could relieve colitis inflammation and increase iron absorption. In summary, current work not only proposed a novel mediation strategy for IBD but also offered some inspirations for future treatment of extraintestinal complications.


Assuntos
Colite/tratamento farmacológico , Ferro/análise , Probióticos/administração & dosagem , Animais , Rastreamento de Células , Colite/induzido quimicamente , Colite/metabolismo , Citocinas/genética , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Alimentos Fermentados/microbiologia , Humanos , Ferro/metabolismo , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactobacillus/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Probióticos/análise , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
7.
RSC Adv ; 10(22): 13029-13036, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35492135

RESUMO

Food-borne bacteria have received increasing attention due to their great impact on human health. Bioimaging makes it possible to monitor bacteria inside the living body in real time and in situ. Nano-luciferase (NLuc) as a new member of the luciferase family exhibits superior properties than the commonly used luciferases, including small size, high stability and improved luminescence. Herein, NLuc, CBRLuc and FLuc were well expressed in varied food-borne bacteria. Results showed that the signal intensity of E. coli-NLuc was about 41 times higher than E. coli-CBRLuc, L. plantarum-NLuc was nearly 227 times that of L. plantarum-FLuc in vitro. Moreover, NLuc was applied to trace L. plantarum and E. coli in vivo through the whole body and separated digestive tract imaging, as well as the feces bacterium counting and probing. The persistence of bioluminescent strains was predominantly localized in colon and cecum of mice after oral administration. The NLuc system showed its incomparable superiority, especially in the application of intestinal imaging and the universality for food-borne bacteria. We demonstrated that the NLuc system was a brilliant alternative for specific application of food-borne bacteria in vivo, aiming to collect more accurate and real-time information of food-borne bacteria from the living body for further investigation of their damage mechanism and nutrition effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA