Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085241

RESUMO

Cowpea (Vigna unguiculata L.), a significant vegetable crop in China, holds particular prominence in the tropical island of Hainan. This region serves as the primary production area for the winter cultivation of cowpea. Phytoplasmas are an idiopathic parasitic pathogen and cannot be cultured in vitro. It is mainly transmitted by the insect vectors with the piercing and sucking mouthparts, such as leafhoppers, plant hoppers, and psyllids. (Kumari et al. 2019). On September 11, 2023, typical characteristics of phytoplasma diseases on cowpeas were observed in the experimental base of Hainan Academy of Agricultural Sciences (20°0'38.6964″N, 110°21'35.4024″E, Haikou City, Hainan Province, China), including reduced leaf size, chlorosis, and the development of broom-like branch deformities reminiscent, as depicted in Figure 1. At the same time, we found a large number of leafhoppers near the diseased plants, and we speculated that leafhoppers are the insect carriers that spread the disease. Following an on-site investigation, it was determined that the disease incidence ranges from 10% to 15%, leading to a consequential decrease of about 10% in yield, which is a potential disease that seriously threatens the cowpea industry in Hainan. Ten disease and healthy samples were meticulously collected and subsequently preserved at -80°C within the laboratory refrigerator. Three disease samples denoted as HNNKY-1, HNNKY-2, and HNNKY-3, were randomly chosen, and total DNA extraction was carried out employing the NuClean Plant Genomic DNA Kit (CWBIO, Taizhou, China), while three healthy samples were randomly selected as control. The 16S rRNA gene was amplified by PCR using the primer pairs P1/P7 (Schneider et al. 1995) and R16F2n / R16R2 (Lee et al. 1993) and the secA gene was amplified by PCR using the primer pairs secAfor1/secArev3 (Hodgetts et al. 2008). After agarose gel electrophoresis analysis, no DNA fragments were observed in the healthy leaf samples, whereas all three disease samples yielded amplification products. The PCR products were subsequently sequenced by Hainan Nanshan Biotech Co., Ltd., Haikou, China. After sequence analysis, it was found that the 16S rRNA gene and secA gene sequences HNNKY-1, HNNKY-2, and HNNKY-3 were identical to each other. We selected two gene sequences of strain HNNKY-3 to submission to the GenBank database, The length of the 16S rRNA gene sequence is 1193 base pairs, identified by the accession number OR666421, while the secA gene sequence is 825 base pairs in length, associated with the accession number OR661282. The phytoplasma strain HNNKY-3 was named 'Vigna unguiculata' witches'-broom phytoplasma. A BLAST analysis of the 16S rRNA gene revealed that strain HNNKY-3 displayed a 100% sequence match with 'Emilia sonchifolia' witches'-broom phytoplasma (MT420682), Peanut witches'-broom phytoplasma (OR239773), and 'Raphanus sativus' witches'-broom phytoplasma (OK491387). All of these phytoplasmas were classified within the 16SrII group. Based on the BLAST analysis of partial secA gene sequences, it was discerned that sequence homogeneity ranged from 99.27% to 99.74% among the studied sequences. These sequences were collectively classified as members of the 16SrII group. In addition, a phylogenetic tree was constructed by MEGA 11 (version 11.0.13) based on the 16Sr RNA gene and secA gene by the neighbor-joining method (Tamura et al. 2004). The results demonstrated the clustering of HNNKY-3 phytoplasma strains within the 16SrII group, as illustrated in Figures 2 and 3. A virtual RFLP analysis based on the 16S rRNA gene fragment of HNNKY-3 was conducted using the interactive online phytoplasma classification tool, iPhyClassifier (Zhao et al. 2009). The results indicated that the phytoplasma strain was the same as the reference pattern of the onion yellows phytoplasma of 16SrII-A (GenBank accession: L33765), and the similarity coefficient was 1.00. To best of our knowledge, this is the inaugural documentation of 16SrII Group-related phytoplasma infecting cowpea in Hainan, China, and lays the groundwork for further research on the dissemination of cowpea phytoplasma disease within China.

2.
J Insect Sci ; 15: 180, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25700538

RESUMO

The wasp Spalangia endius Walker (Hymenoptera: Pteromalidae) is a major parasitoid of the pupae of fruit flies, which are a common agricultural pest. An understanding of this intricate host-parasitoid interaction could provide basic information necessary for the sustainable integrated biological control of fruit flies. In this study, we investigated the effect of S. endius on different-aged pupae of the melon fly Bactrocera cucurbitae Coquillett by using choice and nonchoice tests under laboratory conditions. We showed that S. endius females oviposited, and their progeny successfully developed, in different-aged pupae of B. cucurbitae regardless of the method of exposure. There was an oviposition preference for 3-5-d-old pupa. The highest mean percentage parasitism occurred on 4- and 5-d-old hosts, followed by 2- and 3-d-old hosts. The average development time for both males and females was significantly longer in 6-7-d-old hosts than in the younger host stages. Adult females that developed from younger host pupae (2-5-d old) were significantly heavier than those from older host pupae (6-7-d old), and they also lived longer. The sex ratio (proportion of females) of the parasite progeny decreased with an increase in host age. Host mortality also decreased gradually as the pupal age increased. The differences in development time, body weight, and longevity between females and males were significant. These results suggest that S. endius is a good candidate for the biological control of B. cucurbitae.


Assuntos
Oviposição/fisiologia , Tephritidae/parasitologia , Vespas/fisiologia , Fatores Etários , Animais , Feminino , Longevidade , Masculino , Controle Biológico de Vetores/métodos , Pupa/parasitologia , Razão de Masculinidade , Vespas/embriologia , Vespas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA