Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 280(Pt 4): 135979, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332550

RESUMO

Heat shock protein 90 (HSP90) has a recognized anti-heat stress injury effect, but its function and corresponding molecular mechanism in heat-stressed hepatocytes are not fully understood, especially in tropical animals. In the present study, we identified several key factors affecting resistance to injury liver tissues from heat-stressed Wenchang chickens (a typical tropical species), such as HSP90, cellular pyroptosis and mitophagy. Heat stress upregulated the NLRP3/Caspase-1/GSDMD-N-mediated cellular pyroptosis pathway and the Pink1/Parkin-mediated mitophagy pathway in chicken hepatocytes, accompanied by the upregulation of HSP90. We also found that HSP90 overexpression significantly reduced heat stress-induced hepatocyte pyroptosis and enhanced mitophagy in primary hepatocytes from Wenchang chickens (PHWCs). HSP90 knockdown significantly increased heat stress-induced hepatocyte pyroptosis and decreased mitophagy in PHWCs. Interestingly, we performed immunoprecipitation and immunofluorescence colocalization and found that HSP90 and Pink1 can interact and directly regulate the level of mitophagy in PHWCs. Our results suggest that HSP90, which regulates Pink1, is an important factor in mitophagy that attenuates heat stress injury by inhibiting cellular pyroptosis.

2.
Poult Sci ; 103(11): 104161, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39190996

RESUMO

Rising temperatures and intensified agricultural practices have heightened heat stress (HS)-related challenges in poultry farming, notably heat-induced sudden death in chickens. Wenchang chickens, recognized for their heat resistance, have emerged as the potential candidates for improving the economic efficiency of poultry farming. The adrenal gland plays a crucial role in preventing HS-induced heart failure sudden death by secreting hormones. However, little is known about the damage to and resilience of Wenchang chicken adrenal glands during HS. In this study, 34 healthy Wenchang chickens with similar weights were selected for formal experimentation, with 10 as the control group (Con). Following a single exposure to acute HS of 42 ± 1°C and 65% relative humidity for 5 h, 15 deceased individuals formed the HS death (HSD) group, and 9 survived comprised the HS survival (HSS) group. ELISA revealed significant higher (P < 0.05) levels of COR and NE in the HSS and the lowest levels of CORT and EPI in the HSD. Histopathological analysis indicated major degeneration in HSS cortical and chromaffin cells and extensive cell necrosis (nuclear pyknosis) in HSD. Proteomic analysis identified 572 DEPs in HSD vs. Con and 191 DEPs in HSS vs. Con. Bioinformatics highlighted ER protein processing, especially ERAD as a key pathway for heat stress resistance (HSR) in the adrenal gland, with HSPH1, DNAJA1, HSP90AA1, HSPA8 and HERPUD1 identified as regulating key molecules. Western blotting validated significantly higher (P < 0.01) protein levels in both HSS and HSD compared to the Con. Immunohistochemical staining showed increased cytoplasmic HSPH1-positive signal intensity under HS and enhanced HSP90AA1 nuclear signals, strongest in HSS. In summary, HS induces pathological damage in Wenchang chicken adrenal glands, affecting hormone secretion, and various heat shock proteins play crucial roles in cellular resistance. These results elucidate the biological basis of HSR in Wenchang chickens from the perspective of the adrenal gland and provide necessary research foundations for enhancing economic performance of various broilers in high-heat environments and screening drugs for HS treatment.


Assuntos
Glândulas Suprarrenais , Proteínas Aviárias , Galinhas , Resposta ao Choque Térmico , Proteômica , Animais , Galinhas/fisiologia , Glândulas Suprarrenais/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Masculino , Temperatura Alta
3.
Poult Sci ; 103(2): 103340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38118221

RESUMO

Heat stress (HS) can result in sudden death and is one of the most stressful and costly events in chicken. Currently, biomarkers used clinically to detect heat stress state in chickens are not optimal, especially for living ones. Analysis of changes in serum proteins of heat-stressed chickens can help to identify some novel convenient biomarkers for this. Twenty-four chickens were exposed to HS at 42°C ± 1°C with a relative humidity of 65% for continuous 5 h in a single day, and 10 birds were used as controls (Con). During HS, 15 dead chickens were categorized as heat stress death group (HSD), and 9 surviving ones served as heat stress survivor group (HSS). Label-free quantitative proteomics (LFQP) was used to analyze differentially expressed proteins (DEPs) in serum of tested animals. Candidate proteins associated with HS were validated by enzyme-linked immunosorbent assay (ELISA). Diagnostic value of candidate biomarkers was assessed using receiver operating characteristic (ROC) curve analysis. Source of the selected proteins was analyzed in liver tissues with immunohistochemistry and in cell culture supernatant of primary chicken hepatocytes (PCH) using ELISA. In this study, compared to Con, LFQP identified 123 and 53 significantly different serum proteins in HSD and HSS, respectively. Bioinformatics analysis showed that XDH, POSTN, and HSP90 were potential HS biomarkers in tested chickens, which was similar with results from serum ELISAs and immunohistochemistry in liver tissues. The ROC values of 0.793, 0.752, and 0.779 for XDH, POSTN, and HSP90, respectively, permitted the distinction of heat-stressed chickens from the control. Levels of 3 proteins above in the cell culture supernatant of PCH showed an increasing trend as HS time increased. Therefore, considering that mean concentration of POSTN in serum was higher than that of HSP90, XDH, and POSTN may be optimal biomarkers in serum for detecting HS level in chickens, and mainly secreted from hepatocytes. The former indicates that heat-stressed chickens are in a damaged state, and the latter implies that chickens can repair heat stress damage.


Assuntos
Galinhas , Proteômica , Animais , Galinhas/metabolismo , Resposta ao Choque Térmico , Proteínas de Choque Térmico HSP90/metabolismo , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA