Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nanoscale ; 16(20): 10064-10070, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712853

RESUMO

The widespread applicability of perovskite nanocrystals (PeNCs) is impeded by their intrinsic instability. A promising solution is utilizing robust chalcogenides as a protective shell to shield the sensitive luminescent cores from the external environment. However, the inferior structural stability and surface lability of PeNCs usually lead to perovskite phase transition during shell growth. Herein, we introduced smaller Zn ions to partially replace Pb ions in perovskites, which reduces the Pb-X bond length and enhances the Pb-X bond energy for inner lattice stabilization. Simultaneously, extra oleylammonium bromide (OAmBr) was added to protect the labile surface of PeNCs by compensating for the detachment of ligands and the loss of surface Br ions. As a result, the dual strategies enable the epitaxial growth of a ZnS shell and significantly enhance the chemical stability of CsZnPbBr3/ZnS core/shell PeNCs. After three thermal cycles ranging from 300 to 450 K, the core/shell PeNCs retained 70% of their initial photoluminescence (PL) intensity. In stark contrast, the pristine CsPbBr3 PeNCs exhibit complete PL quenching after just the first temperature cycle. For practical applications, the green core/shell PeNCs were integrated with commercially available red-emitting phosphors on a blue-emitting InGaN chip to fabricate a white light-emitting diode (WLED), which demonstrates a high luminous efficacy (LE) of 61.3 lm W-1 and nearly constant Commission Internationale de l'Eclairage (CIE) coordinates under varying operating currents.

2.
Nanoscale ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742531

RESUMO

ZnSeTe quantum dots (QDs) have been employed as promising emitters for blue QD-based light-emitting diodes (QLEDs) due to their unique optoelectronic properties and environmental friendliness. However, such QLEDs usually suffer from serious efficiency roll-off primarily stemming from exciton loss at the interface of the QD layer and the ZnMgO (ZMO) electron transport layer (ETL), which remarkably hinders their application in flat-panel displays. Herein, we propose an in situ hybridization strategy that involves the pre-introduction of amino alcohols into the reaction solution. This strategy effectively suppresses the nucleophilic condensation process by facilitating the coordination of ammonium and hydroxyl groups with metal cations (M2+, i.e. Zn2+ and Mg2+). It slows down the growth rate of ZMO nanoparticles (NPs) while simultaneously facilitating M-O coordination, resulting in the synthesis of small-sized and low-defect ZMO NPs. Notably, this in situ hybridization approach not only alleviates emission quenching at the QDs/ETL interface but also elevates the energy level of the ETL for enhancing carrier injection. We further investigated the impact of amino alcohols with varying carbon-chain lengths on the performance of ZMO NPs and the corresponding LED devices. The optimal blue ZnSeTe QLED demonstrates an impressive EQE of 8.6% with only an ∼11% drop when the current density is increased to 200 mA cm-2, and the device operating lifetime extends to over 1300 h. Conversely, the device utilizing traditionally post-treated ZMO NPs as the ETL exhibits 45% efficiency roll-off and device lifetime of merely 190 h.

3.
Angew Chem Int Ed Engl ; : e202403996, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679568

RESUMO

Decreasing perovskite nanocrystal size increases radiative recombination due to the quantum confinement effect, but also increases the Auger recombination rate which leads to carrier imbalance in the emitting layers of electroluminescent devices. Here, we overcome this trade-off by increasing the exciton effective mass without affecting the size, which is realized through the trace Cd2+ doping of formamidinium lead bromide perovskite nanocrystals. We observe an ~2.7 times increase in the exciton binding energy benefiting from a slight distortion of the [BX6]4- octahedra caused by doping in the case of that the Auger recombination rate is almost unchanged. As a result, bright color-saturated green emitting perovskite nanocrystals with a photoluminescence quantum yield of 96 % are obtained. Cd2+ doping also shifts up the energy levels of the nanocrystals, relative to the Fermi level so that heavily n-doped emitters convert into only slightly n-doped ones; this boosts the charge injection efficiency of the corresponding light-emitting diodes. The light-emitting devices based on those nanocrystals reached a high external quantum efficiency of 29.4 % corresponding to a current efficiency of 123 cd A-1, and showed dramatically improved device lifetime, with a narrow bandwidth of 22 nm and Commission Internationale de I'Eclairage coordinates of (0.20, 0.76) for color-saturated green emission for the electroluminescence peak centered at 534 nm, thus being fully compliant with the latest standard for wide color gamut displays.

4.
Nanoscale ; 16(3): 959-960, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37997660

RESUMO

An introduction to the Nanoscale themed collection organised in celebration of the 25th anniversary of the Key Laboratory for Special Functional Materials at Henan University in China, featuring research in all aspects of nanoscience and nanotechnology.

5.
Nanoscale ; 15(27): 11491-11496, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37382388

RESUMO

Copper-based ternary halide composites have attracted great attention due to their superior chemical stability and optical properties. Herein, we developed an ultrafast high-power ultrasonic synthesis strategy to realize the uniform nucleation and growth of highly luminescent and stable Cs3Cu2I5 nanocrystals (NCs). The as-synthesized Cs3Cu2I5 NCs show uniform hexagonal morphology with an average mean size of 24.4 nm and emit blue light with a high photoluminescence quantum yield (PLQY) of ∼85%. Moreover, the Cs3Cu2I5 NCs exhibit a remarkable stability during continuous eight times heating/cooling cycling tests (303-423 K). We also demonstrated an efficient and stable white light-emitting diode (WLED) with a high luminous efficiency (LE) of 41.5 lm W-1 and a Commission Internationale de l'Eclairage (CIE) color coordinate of (0.33,0.33).

6.
Langmuir ; 39(14): 5156-5168, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36995293

RESUMO

We report on studies that demonstrate how the chemical composition of the surface of copper nanoparticles (CuNPs) - in terms of percentage copper(I/II) oxides - can be varied by the presence of N-donor ligands during their formation via laser ablation. Changing the chemical composition thus allows systematic tuning of the surface plasmon resonance (SPR) transition. The trialed ligands include pyridines, tetrazoles, and alkylated tetrazoles. CuNPs formed in the presence of pyridines, and alkylated tetrazoles exhibit a SPR transition only slightly blue shifted with respect to CuNPs formed in the absence of any ligand. On the other hand, the presence of tetrazoles results in CuNPs characterized by a significant blue shift of the order of 50-70 nm. By comparing these data also with the SPR of CuNPs formed in the presence of carboxylic acids and hydrazine, this work demonstrates that the blue shift in the SPR is due to tetrazolate anions providing a reducing environment to the nascent CuNPs, thus preventing the formation of copper(II) oxides. This conclusion is further supported by the fact that both AFM and TEM data indicate only small variations in the size of the nanoparticles, which is not enough to justify a 50-70 nm blue-shift of the SPR transition. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) studies further confirm the absence of Cu(II)-containing CuNPs when prepared in the presence of tetrazolate anions.

7.
Chem Rev ; 123(7): 3625-3692, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36946890

RESUMO

Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.

8.
Chem Soc Rev ; 52(4): 1519, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36756836

RESUMO

Correction for 'Atomically flat semiconductor nanoplatelets for light-emitting applications' by Bing Bai et al., Chem. Soc. Rev., 2023, 52, 318-360, https://doi.org/10.1039/D2CS00130F.

9.
Nanoscale ; 15(6): 2837-2842, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36688415

RESUMO

The interfacial state between the hole transport layer (HTL) and quantum dots (QDs) plays a crucial role in the optoelectronic performance of light-emitting diodes. Herein, we reported an efficient and bright green indium phosphide (InP) QD-based light-emitting diode (LED) by introducing a self-assembled monolayer of 4-bromo-2-fluorothiophenol (SAM-BFTP) molecule to improve interfacial charge transport in LED devices. The molecular dipole layer at the interface of the QD layer and HTL not only reduces the energy barrier of holes injected into QDs through vacuum energy level shift but also inhibits the fluorescence quenching of QDs caused by the HTL. Moreover, copper ions doped into phosphomolybdic acid (Cu:PMA) is selected as the hole injection layer (HIL) into the device system based on the SAM-BFTP molecule, and as a result, a green InP QD LED (QLED) with a maximum external quantum efficiency (EQE) of 8.46% and a luminance of 18 356 cd m-2 was realized. This work can inform and underpin the future development of InP-based QLEDs with concurrent high efficiency and brightness.

10.
Adv Mater ; 35(2): e2207835, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36245308

RESUMO

An environmentally friendly mixed-halide perovskite MA3 Bi2 Cl9- x Ix with a bandgap funnel structure has been developed. However, the dynamic interfacial interactions of bandgap funneling in MA3 Bi2 Cl9- x Ix perovskites in the photoelectrochemical (PEC) system remain ambiguous. In light of this, single- and mixed-halide lead-free bismuth-based hybrid perovskites-MA3 Bi2 Cl9- y Iy and MA3 Bi2 I9 (named MBCl-I and MBI)-in the presence and absence of the bandgap funnel structure, respectively, are prepared. Using temperature-dependent transient photoluminescence and electrochemical voltammetric techniques, the photophysical and (photo)electrochemical phenomena of solid-solid and solid-liquid interfaces for MBCl-I and MBI halide perovskites are therefore confirmed. Concerning the mixed-halide hybrid perovskites MBCl-I with a bandgap funnel structure, stronger electronic coupling arising from an enhanced overlap of electronic wavefunctions results in more efficient exciton transport. Besides, MBCl-I's effective diffusion coefficient and electron-transfer rate demonstrate efficient heterogeneous charge transfer at the solid-liquid interface, generating improved photoelectrochemical hydrogen production. Consequently, this combination of photophysical and electrochemical techniques opens up an avenue to explore the intrinsic and interfacial properties of semiconductor materials for elucidating the correlation between material characterization and device performance.

11.
Chem Soc Rev ; 52(1): 318-360, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36533300

RESUMO

The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers. This review article first introduces the intrinsic characteristics of 2D semiconductor NPLs with atomic flatness. Subsequently, the approaches and mechanisms for the controlled synthesis of atomically flat NPLs are summarized followed by an insight on recent progress in the mediation of core/shell, core/crown and core/crown@shell structures by selective epitaxial growth of passivation layers on different planes of NPLs. Moreover, an overview of the unique optical properties and the associated light-emitting applications is elaborated. Despite great progress in this research field, there are some issues relating to heavy metal elements such as Cd2+ in NPLs, and the ambiguous gain mechanisms of NPLs and others are the main obstacles that prevent NPLs from widespread applications. Therefore, a perspective is included at the end of this review article, in which the current challenges in this stimulating research field are discussed and possible solutions to tackle these challenges are proposed.

12.
Front Oncol ; 12: 954685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185263

RESUMO

The prognosis of patients with stage IIIC non-small-cell lung cancer (NSCLC) is poor due to the loss of surgical treatment opportunities. Improving the prognosis of these patients with IIIC NSCLC urgently needs to be addressed. Here, we report a stage IIIC (T4N3M0 IIIC (AJCC 8th)) NSCLC patient treated with 2 cycles of anti-PD-1 immunotherapy combined with chemotherapy and anti-angiogenesis therapy; after two cycles of treatment, the patient achieved a partial response and obtained the opportunity for surgical treatment. After the operation, the patient achieved a pathological complete response and successfully transformed from unresectable stage IIIC lung cancer to radical surgery (ypT0N0M0). Our study is expected to provide new ideas for treating patients with unresectable stage IIIC NSCLC in the future.

13.
Small Methods ; 6(8): e2200326, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35733072

RESUMO

The photocatalytic system using hydrohalic acid (HX) for hydrogen production is a promising strategy to generate clean and renewable fuels as well as value-added chemicals (such as X2 /X3 - ). However, it is still challenging to develop a visible-light active and strong-acid resistive photocatalyst. Hybrid perovskites have been recognized as a potential photocatalyst for photovoltaic HX splitting. Herein, a novel environmentally friendly mixed halide perovskite MA3 Bi2 Cl9-x Ix with a bandgap funnel structure is developed, i.e., confirmed by energy dispersive X-ray analysis and density functional theory calculations. Due to gradient neutral formation energy within iodine-doped MA3 Bi2 Cl9 , the concentration of iodide element decreases from the surface to the interior across the MA3 Bi2 Cl9-x Ix perovskite. Because of the aligned energy levels of iodide/chloride-mixed MA3 Bi2 Cl9-x Ix , a graded bandgap funnel structure is therefore formed, leading to the promotion of photoinduced charge transfer from the interior to the surface for efficient photocatalytic redox reaction. As a result, the hydrogen generation rate of the optimized MA3 Bi2 Cl9-x Ix is enhanced up to ≈341 ± 61.7 µmol h-1 with a Pt co-catalyst under visible light irradiation.

14.
Front Oncol ; 12: 837547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402270

RESUMO

Penile squamous cell carcinoma (SCC) is a rare malignant tumor in males with a poor prognosis. Currently, the primary treatment is surgery. Recurrent cases have limited treatment options after failed radiotherapy and chemotherapy. The therapeutic effect of immunotherapy in penile SCCs has not been reported. Tislelizumab, a new PD1 inhibitor, has shown a satisfactory impact in treating head and neck SCC and lung SCC combined with chemotherapy. However, there is currently no report on its efficacy in penile SCC. Here, a 76-year-old man with multiple enlarged inguinal lymph nodes 11 months after radical surgery for penile SCC was administered immunotherapy (tislelizumab) combined with chemotherapy (albumin paclitaxel plus nedaplatin) for 2 cycles. Pelvic Magnetic resonance imaging (MRI) showed that the multiple lymph nodes in the groin area disappeared. To our knowledge, this is the first case report of immunotherapy combined with chemotherapy showing promising results in recurrent penile SCC. It provides a basis for developing a new treatment option combining immunotherapy and chemotherapy, whose efficacy needs to be further evaluated in penile SCC.

15.
Commun Biol ; 5(1): 51, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027651

RESUMO

Retinoic acid-related orphan receptor alpha (RORA) suppression is associated with autism spectrum disorder (ASD) development, although the mechanism remains unclear. In this study, we aim to investigate the potential effect and mechanisms of RORA suppression on autism-like behavior (ALB) through maternal diabetes-mediated mouse model. Our in vitro study in human neural progenitor cells shows that transient hyperglycemia induces persistent RORA suppression through oxidative stress-mediated epigenetic modifications and subsequent dissociation of octamer-binding transcription factor 3/4 from the RORA promoter, subsequently suppressing the expression of aromatase and superoxide dismutase 2. The in vivo mouse study shows that prenatal RORA deficiency in neuron-specific RORA null mice mimics maternal diabetes-mediated ALB; postnatal RORA expression in the amygdala ameliorates, while postnatal RORA knockdown mimics, maternal diabetes-mediated ALB in offspring. In addition, RORA mRNA levels in peripheral blood mononuclear cells decrease to 34.2% in ASD patients (n = 121) compared to the typically developing group (n = 118), and the related Receiver Operating Characteristic curve shows good sensitivity and specificity with a calculated 84.1% of Area Under the Curve for ASD diagnosis. We conclude that maternal diabetes contributes to ALB in offspring through suppression of RORA and aromatase, RORA expression in PBMC could be a potential marker for ASD screening.


Assuntos
Aromatase/genética , Transtorno do Espectro Autista/genética , Diabetes Gestacional/enzimologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Animais , Aromatase/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Gravidez
16.
J Colloid Interface Sci ; 608(Pt 2): 1116-1125, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34749133

RESUMO

Nickel oxyhydroxide (NiOOH) is regarded as one of the promising cocatalysts to enhance the catalytic performance of photoanodes but suffers from serious interfacial charge-carrier recombination at the photoanode||NiOOH interface. In this work, surface-engineered BiVO4 photoanodes are fabricated by sandwiching an oxygen vacancy (Ovac) interlayer between BiVO4 and NiOOH. The surface Ovac interlayer is introduced on BiVO4 by a chemical reduction treatment using a mild reducing agent, sodium hypophosphite. The induced Ovac can alleviate the interfacial charge-carrier recombination at the BiVO4||NiOOH junction, resulting in efficient charge separation and transfer efficiencies, while an outer NiOOH layer is coated to prevent the Ovac layer from degradation. As a result, the as-prepared NiOOH-P-BiVO4 photoanode exhibits a high photocurrent density of 3.2 mA cm-2 at 1.23 V vs. RHE under the irradiation of 100 mW/cm2 AM 1.5G simulated sunlight, in comparison to those of bare BiVO4, P-BiVO4, and NiOOH-BiVO4 photoanodes (1.1, 2.1 and 2.3 mA cm-2, respectively). In addition to the superior photoactivity, the 5-h amperometric measurements illustrate improved stability of the surface-engineered NiOOH-P-BiVO4 photoanode. Our work showcases the feasibility of combining cocatalysts with Ovac, for improved photoactivity and stability of photoelectrodes.

17.
Front Oncol ; 11: 782646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888252

RESUMO

Thyroid Hürthle cell carcinoma, known as thyroid eosinophilic carcinoma, is a rare pathological type of differentiated thyroid cancer (DTC), representing 3-4% of all thyroid cancers. However, given the high risk of invasion and metastasis, thyroid Hürthle cell carcinoma has a relatively poor prognosis. Traditional treatment methods have limited effects on patients with metastatic thyroid cancers. Developing a valuable therapy for advanced thyroid carcinomas is an unfilled need, and immunotherapy could represent another choice for these tumors. We herein reported the case of a patient with recurrent advanced thyroid Hürthle cell cancer and positive programmed death-ligand 1 (PD-L1) expression, who suffered tumor progression after re-surgery, radiotherapy, and targeted therapy. It is encouraging that PD-1 inhibitors in combination with GM-CSF and stereotactic body irradiation (SBRT) on metastatic disease have a significant anti-tumor effect.

18.
Nano Lett ; 21(24): 10222-10229, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34847665

RESUMO

Achieving bright photon upconversion under low irradiance is of great significance and finds many stimulating applications from photovoltaics to biophotonics. However, it remains a daunting challenge to significantly intensify upconversion luminescence in small nanoparticles with a simple structure. Herein, we report the amplification of photon upconversion through engineering interfacial density of states between the core and the shell layer in sub-10 nm colloidal rare-earth ions doped fluoride nanocrystals. Through tuning of the metal cations in the shell layer of alkaline-earth-based core/shell nanoparticles, both the interfacial phonon frequency and the density of state are evidently decreased, resulting in the luminescence intensification of up to 8224 times. The generality of this upconversion enhancement strategy has been verified through expansion of this approach to alkali-based core/shell nanoparticles. The engineering of photon density of state in such core/shell nanoparticles enables dynamic display and high-level security information storage.


Assuntos
Metais Terras Raras , Nanopartículas , Fluoretos/química , Luminescência , Nanopartículas/química , Fótons
19.
Chem Soc Rev ; 50(22): 12744-12787, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34647937

RESUMO

Ammonia (NH3) is essential to serve as the biological building blocks for maintaining organism function, and as the indispensable nitrogenous fertilizers for increasing the yield of nutritious crops. The current Haber-Bosch process for industrial NH3 production is highly energy- and capital-intensive. In light of this, the electroreduction of nitrogen (N2) into valuable NH3, as an alternative, offers a sustainable pathway for the Haber-Bosch transition, because it utilizes renewable electricity and operates under ambient conditions. Identifying highly efficient electrocatalysts remains the priority in the electrochemical nitrogen reduction reaction (NRR), marking superior selectivity, activity, and stability. Two-dimensional (2D) nanomaterials with sufficient exposed active sites, high specific surface area, good conductivity, rich surface defects, and easily tunable electronic properties hold great promise for the adsorption and activation of nitrogen towards sustainable NRR. Therefore, this Review focuses on the fundamental principles and the key metrics being pursued in NRR. Based on the fundamental understanding, the recent efforts devoted to engineering protocols for constructing 2D electrocatalysts towards NRR are presented. Then, the state-of-the-art 2D electrocatalysts for N2 reduction to NH3 are summarized, aiming at providing a comprehensive overview of the structure-performance relationships of 2D electrocatalysts towards NRR. Finally, we propose the challenges and future outlook in this prospective area.


Assuntos
Nanoestruturas , Nitrogênio , Adsorção , Amônia , Estudos Prospectivos
20.
NPJ Prim Care Respir Med ; 31(1): 32, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075048

RESUMO

This study aims to investigate the characteristics of the phenotype and management of chronic obstructive pulmonary disease (COPD) patients in the general population in China. We analyzed spirometry-confirmed COPD patients who were identified from a population-based, nationally representative sample in China. All participants were measured with airflow limitation severity based on post-bronchodilator FEV1 percent predicted, bronchodilator responsiveness, exacerbation history, and respiratory symptoms. Among a total of 9134 COPD patients, 90.3% were non-exacerbators, 2.9% were frequent exacerbators without chronic bronchitis, 2.0% were frequent exacerbators with chronic bronchitis, and 4.8% were asthma-COPD overlap. Less than 5% of non-exacerbators ever had pulmonary function testing performed. The utilization rate of inhaled medication in non-exacerbators, exacerbators without chronic bronchitis, exacerbators with chronic bronchitis, and asthma-COPD overlap was 1.4, 23.5, 29.5, and 19.4%, respectively. A comprehensive strategy for the management of COPD patients based on phenotype in primary care is urgently needed.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/tratamento farmacológico , Asma/epidemiologia , Estudos Transversais , Progressão da Doença , Humanos , Fenótipo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA