Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Clin Exp Med ; 24(1): 149, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967892

RESUMO

Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder, but its diagnosis and treatment remain obscure. Non-coding RNAs (ncRNAs), as potential biomarkers, have attracted increasing attention in digestive diseases. Here, we present a comprehensive research status, development trends, and valuable insights in this subject area. The literature search was performed using Web of Science Core Collection. VOSviewer 1.6.20, Citespace 6.2.R4, and Microsoft Excel 2021 were used for bibliometric analysis. A total of 124 articles were included in the analysis. Overall, publication patterns fluctuated. Globally, People's Republic of China, the USA, and Germany were the top three contributors of publications. Guangzhou University of Chinese Medicine, University of California, Mayo Clinic, and University of California, Los Angeles contributed the highest number of publications. The pathways and specific mechanisms by which ncRNAs regulate transcription and translation and thus regulate the pathophysiological processes of IBS are the main research hotspots in this field. We found that microRNA (miRNAs) are intricately involved in the regulation of key pathologies such as viscera sensitivity, intestinal permeability, intestinal mucosal barrier, immunoinflammatory response, and brain-gut axis in the IBS, and these topics have garnered significant attention in research community. Notably, microecological disorders are also associated with IBS pathogenesis, and ncRNA may play an important role in the interactions between host and intestinal flora. This is the first bibliometric study to comprehensively summarize the research hotspots and trends related to IBS and ncRNAs (especially miRNAs). Our findings will help understand the role of ncRNAs in IBS and provide guidance to future studies.


Assuntos
Bibliometria , Síndrome do Intestino Irritável , MicroRNAs , Síndrome do Intestino Irritável/genética , Humanos , MicroRNAs/genética
2.
Adv Sci (Weinh) ; : e2309817, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900059

RESUMO

Preimplantation genetic testing (PGT) can minimize the risk of birth defects. However, the accuracy and applicability of routine PGT is confounded by uneven genome coverage and high allele drop-out rate from existing single-cell whole genome amplification methods. Here, a method to diagnose genetic mutations and concurrently evaluate embryo competence by leveraging the abundant mRNA transcript copies present in trophectoderm cells is developed. The feasibility of the method is confirmed with 19 donated blastocysts. Next, the method is applied to 82 embryos from 26 families with monogenic defects for simultaneous mutation detection and competence assessment. The accuracy rate of direct mutation detection is up to 95%, which is significantly higher than DNA-based method. Meanwhile, this approach correctly predicted seven out of eight (87.5%) embryos that failed to implant. Of six embryos that are predicted to implant successfully, four met such expectations (66.7%). Notably, this method is superior at conditions for mutation detection that are challenging when using DNA-based PGT, such as when detecting pathogenic genes with a high de novo rate, multiple pseudogenes, or an abnormal expansion of CAG trinucleotide repeats. Taken together, this study establishes the feasibility of an RNA-based PGT that is also informative for assessing implantation competence.

3.
Mol Cell Biochem ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878223

RESUMO

LncRNAs have been demonstrated to regulate biological processes in malignant tumors. In our previous study, we identified the immune-related LncRNA RNF144A-AS1 as a potential regulator in SKCM. However, its precise function and regulatory mechanism remain unclear. In this study, we observed upregulation of RNF144A-AS1 in SKCM and found that knockdown of RNF144A-AS1 suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition abilities of melanoma cells. Mechanistically, as a high-risk prognostic factor, RNF144A-AS1 regulated biological processes of SKCM by interacting with TAF15 through an RNA-binding protein-dependent (RBP-dependent) manner. Furthermore, we confirmed that TAF15 activated downstream transcriptional regulation of YAP1 to modulate malignant behaviors in melanoma cells. In vivo experiments revealed that knockdown of RNF144A-AS1 inhibited tumorigenic capacity of melanoma cells and exhibited promising therapeutic effects. Collectively, these findings highlight the significance of the RNF144A-AS1/TAF15/YAP1 axis in promoting malignant behaviors in SKCM and provide novel insights into potential prognostic biomarkers and therapeutic targets for this disease.

4.
Water Res ; 258: 121760, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795547

RESUMO

The photo-Fenton process is effective for pathogen removal, and its low-cost versions can be applied in resource-poor contexts. Herein, a photo-Fenton-like system was proposed using low concentrations of iron oxides (hematite and magnetite) and persulfates (peroxymonosulfate - PMS, and peroxydisulfate - PDS), which exhibited excellent inactivation performance towards MS2 bacteriophages. In the presence of bacteria, MS2 inactivation was inhibited in H2O2 and PDS systems but promoted in PMS-involved systems. The inactivation efficacy of all the proposed systems for mixed bacteria and viruses was greater than that of the sole bacteria, showing potential practical applications. The inactivation performance of humic acid-incorporated iron oxides mediating photo-Fenton-like processes was also studied; except for the PMS-involved system, the inactivation efficacy of the H2O2- and PDS-involved systems was inhibited, but the PDS-involved system was still acceptable (< 2 h). Reactive species exploration experiments indicated that ·OH was the main radical in the H2O2 and PDS systems, whereas 1O2 played a key role in the PMS-involved system. In summary, hematite- and magnetite-mediated persulfate-assisted photo-Fenton-like systems at low concentrations can be used as alternatives to the photo-Fenton process for virus inactivation in sunny areas, providing more possibilities for point-of-use drinking water treatment in developing countries.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Sulfatos/química , Peróxidos/química
5.
Front Immunol ; 15: 1333848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596683

RESUMO

Excessive salt intake is a widespread health issue observed in almost every country around the world. A high salt diet (HSD) has a strong correlation with numerous diseases, including hypertension, chronic kidney disease, and autoimmune disorders. However, the mechanisms underlying HSD-promotion of inflammation and exacerbation of these diseases are not fully understood. In this study, we observed that HSD consumption reduced the abundance of the gut microbial metabolite L-fucose, leading to a more substantial inflammatory response in mice. A HSD led to increased peritonitis incidence in mice, as evidenced by the increased accumulation of inflammatory cells and elevated levels of inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemotactic protein-1 (MCP-1, also known as C-C motif chemokine ligand 2 or CCL2), in peritoneal lavage fluid. Following the administration of broad-spectrum antibiotics, HSD-induced inflammation was abolished, indicating that the proinflammatory effects of HSD were not due to the direct effect of sodium, but rather to HSD-induced alterations in the composition of the gut microbiota. By using untargeted metabolomics techniques, we determined that the levels of the gut microbial metabolite L-fucose were reduced by a HSD. Moreover, the administration of L-fucose or fucoidan, a compound derived from brown that is rich in L-fucose, normalized the level of inflammation in mice following HSD induction. In addition, both L-fucose and fucoidan inhibited LPS-induced macrophage activation in vitro. In summary, our research showed that reduced L-fucose levels in the gut contributed to HSD-exacerbated acute inflammation in mice; these results indicate that L-fucose and fucoidan could interfere with HSD-promotion of the inflammatory response.


Assuntos
Fucose , Polissacarídeos , Cloreto de Sódio na Dieta , Camundongos , Animais , Fucose/farmacologia , Inflamação/metabolismo , Dieta
6.
Sci Total Environ ; 931: 172740, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677424

RESUMO

Pathogens in drinking water remain a challenge for human health, photo-Fenton process is a promising technique for pathogen inactivation, herein, two common iron oxides, hematite and magnetite mediate persulfate (peroxymonosulfate-PMS - and peroxydisulfate-PDS) involved photo-Fenton-like processes were constructed for E. coli inactivation, and the inactivation performance was investigated and compared with the photo-Fenton process under a low intensity UVA irradiation. Results indicated that with a low dose of iron oxides (1 mg/L) and inorganic peroxides (10 mg/L), PMS-involved photo-Fenton-like process is the best substitute for the photo-Fenton one over pH range of 5-8. In addition, humic acid (HA, one of the important components of natural organic matter) incorporated iron oxide-mediated photo-Fenton-like processes for bacteria inactivation was also studied, and facilitating effect was found in UVA/hematite/PMS and UVA/magnetite/PDS systems. Reactive oxygen species (ROS) exploration experiments revealed that ·OH was the predominant radical in H2O2- and PDS-containing systems, whereas 1O2 was one of the principal reactive species in the PMS systems. In addition to the semiconductor photocatalysis of iron oxides and UVA-activated oxidants, iron-complexes (iron-oxidant complexes and iron-bacteria complexes) mediated ligand-to-metal charge transfer (LMCT) processes also made contribution to bacterial inactivation. Overall, this study demonstrates that it is feasible to replace H2O2 with PMS in a photo-Fenton-like process for water disinfection using a low dose of reagents, mediated by cheap catalysts, such as hematite and magnetite, it is also hoped to provide some insights to practical water treatment.


Assuntos
Desinfetantes , Compostos Férricos , Raios Ultravioleta , Compostos Férricos/química , Desinfetantes/farmacologia , Peróxido de Hidrogênio/química , Oxidantes/química , Escherichia coli/efeitos dos fármacos , Desinfecção/métodos , Espécies Reativas de Oxigênio/metabolismo , Purificação da Água/métodos , Peróxidos/química
7.
Pharmacol Res ; 196: 106930, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722518

RESUMO

Postmenopausal osteoporosis is a common bone metabolic disease, and gut microbiota (GM) imbalance plays an important role in the development of metabolic bone disease. Here, we show that ovariectomized mice had high levels of lipopolysaccharide in serum and gut microbiota dysbiosis through increases in luminal Firmicutes:Bacteroidetes ratio. We depleted the GM through antibiotic treatment and observed improvements in bone mass, bone microstructure, and bone strength in ovariectomized mice. Conversely, transplantation of GM adapted to ovariectomy induced bone loss. However, GM depletion reversed ovariectomy-induced gene expression in the tibia and increased periosteal bone formation. Furthermore, bioinformatics analysis revealed that the G-protein-coupled bile acid receptor (TGR5) and systemic inflammatory factors play key roles in bone metabolism. Silencing TGR5 expression through small interfering RNA (siRNA) in the local tibia and knockout of TGR5 attenuated the effects of GM depletion in ovariectomized mice, confirming these findings. Thus, this study highlights the critical role of the GM in inducing bone loss in ovariectomized mice and suggests that targeting TGR5 within the GM may have therapeutic potential for postmenopausal osteoporosis.


Assuntos
Microbioma Gastrointestinal , Osteoporose Pós-Menopausa , Humanos , Feminino , Camundongos , Animais , Osteoporose Pós-Menopausa/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Densidade Óssea , Estrogênios/uso terapêutico
8.
Sci Total Environ ; 901: 166376, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37595906

RESUMO

A novel catalytic system for effective photocatalytic inactivation of Escherichia coli (E. coli) was constructed by anchoring Ag nanoparticles (AgNPs) on silane coupling agent (SCA) pretreated TiO2 nano-tube arrays (Ag/SCA/TiO2NTAs). Morphology and structural analyses revealed that SCA could disperse AgNPs evenly on TiO2NTAs, thus inducing a superior surface plasmon resonance (SPR) effect. Ag/SCA/TiO2NTAs catalyst exhibited excellent inactivation performance when in the presence of peroxymonosulfate (PMS) and visible light (VL), with 6-log E. coli was completely inactivated within 60 min, which was 5.3, 12.5 and 13.2 times higher than that of Ag/SCA/TiO2NTAs/VL, PMS/VL and Ag/SCA/TiO2NTAs/PMS/dark systems, respectively. Additionally, the photocatalyst exhibited a highly reusable property, with the inactivation performance almost unchanged after ten cycles of uses with minimal Ag leaching. The inactivation mechanism analysis demonstrated that both radical (SO4•-, OH) and non-radical (h+, 1O2) pathways involved in E. coli inactivation, and SCA played a pivotal role in the production of reactive species. Chloride ions (Cl-) greatly enhanced the inactivation efficiency, while bicarbonate (HCO3-) and phosphate (H2PO4-) showed an inhibitory effect. Humic acid (HA) displayed a dual effect on inactivation performance, where the low concentration of HA facilitated the bacteria inactivation, while the higher dose suppressed bacteria inactivation. Moreover, the system exhibited excellent inactivation performance in tap water. This work first used SCA as the binder to fix AgNPs on TiO2NTAs for VL photocatalytic inactivation of bacteria with the assistance of PMS, which was expected to provide some insights into the practical treatment of drinking water.

10.
Water Res ; 229: 119452, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502655

RESUMO

Oxidation pretreatments prior to ultrafiltration are hindered by the need for energy input and sludge disposal. Herein, a simulated sunlight-induced natural organic matter (NOM) for peroxymonosulfate (PMS) activation was used as pretreatment to alleviate ultrafiltration membrane fouling caused by NOM itself in the Songhua River water. When light intensity was over 100 mW/cm2, the pretreatment removed NOM effectively, characterized with UV254, dissolved organic carbon (DOC) and maximum fluorescent intensity (Fmax), and improved filtration flux. At 200 mW/cm2 light intensity and 0.5 mM PMS, 57.5% of UV254 and 18.5% of DOC were removed, and humic-like fluorescent component was degraded by 84%-94% while ∼60% for protein-like substance. Membrane flux was increased by 94%, and reversible and irreversible fouling resistances were reduced by 62.4% and 51.9%, respectively. Both total fouling index (TFI) and hydraulic irreversible fouling index (HIFI) were moderately correlated with the DOC, whereas they prominently correlated with the UV254 and the Fmaxs of all fluorescence components, which could be served as key indicators to predict and control membrane fouling. Mathematical modeling showed that the pretreatment alleviated the fouling in the membrane pores and cake layer. The simulated sunlight-induced NOM (3NOM* and eaq¯) could activate PMS to form active species, which enabled to oxidize high molecular weight (MW) substances and mineralize low MW compounds in NOM as well as hinder their linking with inorganic cations, thereby reducing organic and inorganic membrane fouling simultaneously. This study may provide a new strategy for decentralized potable water treatment, especially in a single household or community.


Assuntos
Ultrafiltração , Purificação da Água , Luz Solar , Membranas Artificiais , Peróxidos
11.
Bone ; 166: 116596, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36307018

RESUMO

PURPOSE: Chronic heart failure causes osteoporosis, but the mechanism remains unclear. The sympathetic nerve plays an important role in both bone metabolism and cardiovascular function. METHODS: Thirty-six adult male SD rats were randomly divided into the following four groups: sham surgery (Sham) group, guanethidine (GD) group, abdominal transverse aorta coarctation-induced heart failure + normal saline (TAC) group, and TAC + guanethidine (TAC + GD) group. Normal saline (0.9 % NaCl) or guanethidine (40 mg/kg/ml) was intraperitoneally injected daily for 5 weeks. Then, DXA, micro-CT, ELISA and RT-PCR analyses were performed 12 weeks after treatment. RESULTS: The bone loss in rats subjected to TAC-induced chronic heart failure and chemical sympathectomy with guanethidine was increased. Serum norepinephrine levels were increased in rats with TAC-induced heart failure but were decreased in TAC-induced heart failure rats treated with guanethidine. The expression of α2A adrenergic receptor, α2C adrenergic receptor, osteoprotegerin (OPG), and osteocalcin in the tibia decreased in the TAC-induced heart failure group, and the expression of ß1 adrenergic receptor, ß2 adrenergic receptor, receptor activator of nuclear factor-κ B ligand (RANKL), and RANKL/OPG in the tibia increased in the heart failure group. In addition, these changes in gene expression levels were rescued by chemical sympathectomy with guanethidine. CONCLUSIONS: TAC-induced chronic heart failure is associated with bone mass loss, and the sympathetic nerve plays a significant role in heart failure-related bone mass loss. MINI ABSTRACT: The present study supports the hypothesis that heart failure is related to bone loss, and the excessive activation of sympathetic nerves participates in this pathophysiological process. The present study suggests a potential pathological mechanism of osteoporosis associated with heart failure and new perspectives for developing strategies for heart failure-related bone loss.


Assuntos
Insuficiência Cardíaca , Osteoporose , Animais , Masculino , Ratos , Guanetidina , Insuficiência Cardíaca/complicações , Osteoporose/patologia , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Ratos Sprague-Dawley , Solução Salina
12.
Front Immunol ; 13: 938944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016936

RESUMO

Initial lipopolysaccharide (LPS) exposure leads to a hypo-responsive state by macrophages to a secondary stimulation of LPS, known as endotoxin tolerance. However, recent findings show that functions of endotoxin-tolerant macrophages are not completely suppressed, whereas they undergo a functional re-programming process with upregulation of a panel of molecules leading to enhanced protective functions including antimicrobial and tissue-remodeling activities. However, the underlying molecular mechanisms are still elusive. Erythropoietin (EPO), a glycoprotein regulated by hypoxia-inducible factor 1α (HIF-1α), exerts anti-inflammatory and tissue-protective activities. Nevertheless, the potential effects of EPO on functional re-programming of endotoxin-tolerant macrophages have not been investigated yet. Here, we found that initial LPS exposure led to upregulation of HIF-1α/EPO in macrophages and that EPO enhanced tolerance in tolerized macrophages and mice as demonstrated by suppressed proinflammatory genes such as Il1b, Il6, and Tnfa after secondary LPS stimulation. Moreover, we showed that EPO improved host protective genes in endotoxin-tolerant macrophages and mice, such as the anti-bacterial genes coding for cathelicidin-related antimicrobial peptide (Cnlp) and macrophage receptor with collagenous structure (Marco), and the tissue-repairing gene vascular endothelial growth factor C (Vegfc). Therefore, our findings indicate that EPO mediates the functional re-programming of endotoxin-tolerant macrophages. Mechanistically, we found that PI3K/AKT signaling contributed to EPO-mediated re-programming through upregulation of Irak3 and Wdr5 expression. Specifically, IL-1 receptor-associated kinase 3 (IRAK3) was responsible for inhibiting proinflammatory genes Il1b, Il6, and Tnfa in tolerized macrophages after LPS rechallenge, whereas WDR5 contributed to the upregulation of host beneficial genes including Cnlp, Marco, and Vegfc. In a septic model of mice, EPO pretreatment significantly promoted endotoxin-tolerant re-programming, alleviated lung injury, enhanced bacterial clearance, and decreased mortality in LPS-tolerized mice after secondary infection of Escherichia coli. Collectively, our results reveal a novel role for EPO in mediating functional re-programming of endotoxin-tolerant macrophages; thus, targeting EPO appears to be a new therapeutic option in sepsis and other inflammatory disorders.


Assuntos
Coinfecção , Eritropoetina , Animais , Endotoxinas , Eritropoetina/genética , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Interleucina-1 , Interleucina-6/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator C de Crescimento do Endotélio Vascular
13.
Water Res ; 214: 118167, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196618

RESUMO

To improve H2O2 generation and Fe3+/Fe2+ cycle simultaneously for enhancing Electro-Fenton performance, the electrode aeration (EA) and hydroxylamine sulfate (HA) were coupled. With dimethyl phthalate (DMP) as main target contaminant, combination of HA and EA greatly accelerated the degradation of DMP and exhibited a synergy in the pH of 2.0-6.9 through promoting the key reactions, including electrochemical two-electron reduction of O2 into H2O2 and redox cycles of Fe3+/Fe2+, which then improved the generation of hydroxyl radicals (·OH). The coupling EA and HA reduced the use of HA and converted most of HA into environment-friendly N2 (60.1-62.1% of HA products), while HA/solution aeration(SA) system consumed HA rapidly and the generated N2 only accounted for 5.8-6.7% of HA products. Furthermore, compared with HA/SA and EA Electro-Fenton systems, enhancement degree of DMP degradation in HA/EA Electro-Fenton process was higher in actual waterbody than in ultrapure water. The coupling EA and HA in the Electro-Fenton process could solve the low Fe3+/Fe2+ cycle efficiency and low H2O2 production simultaneously, and improve the N2 selectivity of HA transformation, which advanced its application in practical environmental remediation.

14.
Reprod Biomed Online ; 44(1): 151-162, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866000

RESUMO

RESEARCH QUESTION: Does blastocyst biopsy for preimplantation genetic testing (PGT) increase the risk of adverse maternal and neonatal outcomes? STUDY DESIGN: Retrospective cohort study of 5097 single vitrified-warmed blastocyst transfer cycles from January 2016 to December 2018, with 2061 cycles in the biopsied group and 3036 cycles in the unbiopsied group enrolled in the analyses. Maternal and neonatal outcomes were compared between the two groups. RESULTS: The live birth rate in the biopsied group (41.1%) was significantly higher than that in the unbiopsied group (35.6%, adjusted odds ratio [aOR] 1.27, 95% confidence interval [CI] 1.05-1.54, P = 0.012) after adjusting for maternal age, maternal body mass index, gravidity, parity, infertility diagnosis, timing of blastocyst transfer, blastocyst quality, regimen of endometrial preparation, endometrial thickness before transfer and treatment year. The rates of total pregnancy loss (25.4% versus 32.2%, aOR 0.69, 95% CI 0.52-0.91, P = 0.008) and early miscarriage (12.1% versus 17.3%, aOR 0.56, 95% CI 0.38-0.83, P = 0.004) were significantly lower in the biopsied group than in the unbiopsied group. No significant differences were found in sex ratio or the risks of hypertensive disorders in pregnancy, diabetes in pregnancy, placenta previa, preterm premature rupture of membranes, low birthweight, very low birthweight, macrosomia, small for gestational age, large for gestational age or birth defects between the two groups. When the subgroup analyses were conducted based on different types of PGT, similar patterns were found for all types. CONCLUSION: Blastocyst biopsy might not increase the risks of adverse maternal and neonatal outcomes in the short term.


Assuntos
Aborto Espontâneo , Blastocisto , Biópsia , Blastocisto/patologia , Transferência Embrionária , Feminino , Testes Genéticos , Humanos , Recém-Nascido , Gravidez , Taxa de Gravidez , Estudos Retrospectivos , Transferência de Embrião Único
15.
J Hazard Mater ; 424(Pt B): 127434, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879509

RESUMO

In this work, degradation of bisphenol F (BPF), bisphenol AF (BPAF) and bisphenol S (BPS) by peroxymonosulfate (PMS) with TiO2 nano-tubes arrays (TiO2NTAs) under simulated sunlight irradiation was investigated and compared for the first time. All three bisphenols exhibited appreciable degradation following the order of BPS < BPAF < BPF, and acidic conditions were more conducive to their degradation. The SO4•-, ·OH, h+ and •O2- were all identified in three bisphenols degradation processes. Among these, SO4•- and •O2- were proven to play a dominant role in BPF oxidation process, but SO4•- and h+ were confirmed as the main reactive species for BPAF and BPS removal. Owing to the different reactive species worked in different bisphenols degradation processes, the influences of inorganic anions on three bisphenols degradation were also different. By analyzing the oxidation intermediates of the three bisphenols, it was found that there were some common degradation pathways including bond-cleavage and hydroxylation of the benzene ring shared by three bisphenols. Besides, some specific degradation pathways were also identified, for example, the self-coupling was found in BPF and BPS degradation process, while the benzene ring splitting was occurred only in BPAF transformation process.

16.
Front Surg ; 9: 939096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700024

RESUMO

Background: Irreparable rotator cuff tears (IRCT) are defined as defects that cannot be repaired due to tendon retraction, fat infiltration, or muscle atrophy. One surgical remedy for IRCT is superior capsular reconstruction (SCR), which fixes graft materials between the larger tuberosity and the superior glenoid. Patients and methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria were followed for conducting the systematic review and meta-analysis. From their inception until February 25, 2022, Pubmed, Embase, and Cochrane Library's electronic databases were searched. Studies using cadavers on SCR for IRCT were also included. The humeral head's superior translation and subacromial peak contact pressure were the primary outcomes. The humeral head's anteroposterior translation, the kind of graft material used, its size, and the deltoid load were the secondary outcomes. Results: After eliminating duplicates from the search results, 1,443 unique articles remained, and 20 papers were finally included in the quantitative research. In 14 investigations, the enhanced superior translation of the humeral head was documented in IRCTs. In 13 studies, a considerable improvement following SCR was found, especially when using fascia lata (FL), which could achieve more translation restraints than human dermal allograft (HDA) and long head of bicep tendon (LHBT). Six investigations reported a subacromial peak contact pressure increase in IRCTs, which could be rectified by SCR, and these studies found a substantial increase in this pressure. The results of the reduction in subacromial peak contact pressure remained consistent regardless of the graft material utilized for SCR. While there was a statistically significant difference in the change of graft material length between FL and HDA, the change in graft material thickness between FL and HDA was not significant. The humeral head's anterior-posterior translation was rising in IRCTs and could be returned to its original state with SCR. In five investigations, IRCTs caused a significant increase in deltoid force. Furthermore, only one study showed that SCR significantly decreased deltoid force. Conclusion: With IRCT, SCR might significantly decrease the glenohumeral joint's superior and anterior-posterior stability. Despite the risks for donor-site morbidity and the longer recovery time, FL is still the best current option for SCR.

17.
Plast Reconstr Surg ; 148(6): 936e-945e, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644264

RESUMO

BACKGROUND: Endothelial progenitor cells have shown the ability to enhance neovascularization. In this study, the authors tested whether intraosseous delivery of simvastatin could mobilize endothelial progenitor cells and enhance recovery in a hindlimb ischemia model. METHODS: There are eight groups of rats in this study: normal control; type 1 diabetes mellitus control group control without drug intervention; and type 1 diabetes mellitus rats that randomly received intraosseous simvastatin (0, 0.5, or 1 mg) or oral simvastatin administration (0, 20, or 400 mg). All type 1 diabetes mellitus rats had induced hindlimb ischemia. The number of endothelial progenitor cells in peripheral blood, and serum markers, were detected. The recovery of blood flow at 21 days after treatment was used as the main outcome. RESULTS: The authors demonstrated that endothelial progenitor cell mobilization was increased in the simvastatin 0.5- and 1-mg groups compared with the type 1 diabetes mellitus control and simvastatin 0-mg groups at 1, 2, and 3 weeks. Serum vascular endothelial growth factor levels were significantly increased at 2 weeks in the simvastatin 0.5- and 1-mg groups, in addition to the increase of the blood flow and the gastrocnemius weight at 3 weeks. Similar increase can also been seen in simvastatin 400 mg orally but not in simvastatin 20 mg orally. CONCLUSION: These findings demonstrate that a single intraosseous administration of simvastatin mobilized endothelial progenitor cells at a dose one-hundredth of the required daily oral dose in rats, and this potent mobilization of endothelial progenitor cells markedly improved diabetic limb ischemia by means of neovascularization.


Assuntos
Isquemia Crônica Crítica de Membro/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Células Progenitoras Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Sinvastatina/administração & dosagem , Animais , Isquemia Crônica Crítica de Membro/etiologia , Circulação Colateral/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/induzido quimicamente , Células Progenitoras Endoteliais/fisiologia , Membro Posterior/irrigação sanguínea , Humanos , Infusões Intraósseas , Masculino , Ratos , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
18.
J Vis Exp ; (175)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34570097

RESUMO

In clinical in vitro fertilization (IVF), the prevailing method for PGT-A requires biopsy of a few cells from the trophectoderm (TE). This is the lineage that forms the placenta. This method, however, requires specialized skills, is invasive, and suffers from false positives and negatives because the chromosome numbers in the TE and the inner cell mass (ICM), which develops into the fetus, are not always the same. NICS, a technology requiring sequencing of DNA that released into the culture medium from both TE and ICM, may offer a way out to these problems but has previously been shown to have limited efficacy. The present study reports the full protocol of NICS, which includes culture medium sampling methods, whole genome amplification (WGA) and library preparation, and NGS data analysis by analysis software. Considering the different cryopreservation times in different embryo laboratories, embryologists have two methods for collecting embryo culture medium that can be selected according to the actual conditions of the IVF laboratory.


Assuntos
Diagnóstico Pré-Implantação , Aneuploidia , Blastocisto , Cromossomos , Feminino , Fertilização in vitro , Testes Genéticos , Humanos , Ploidias , Gravidez
19.
J Bone Miner Metab ; 39(6): 925-933, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091742

RESUMO

INTRODUCTION: This study aimed to observe the effects of long-term alendronate pretreatment on the healing of osteoporotic calvarial defects, and further investigate the effect of alendronate combined with once-weekly parathyroid hormone following 12 weeks of alendronate treatment in ovariectomized rats. MATERIALS AND METHODS: Thirty 3-month-old female rats were ovariectomized, and 24 rats received alendronate for 12 weeks. Then, a critical defect was created in the calvaria of all animals. Immediately after osteotomy, the animals received one of five treatments for 8 weeks: (1) continuation of vehicle (group E), (2) alendronate followed by vehicle (group A), (3) continuation of alendronate (group B), (4) alendronate followed by once-weekly parathyroid hormone alone (group C), or (5) continuation of alendronate combined with once-weekly parathyroid hormone (group D). Calvarial defect healing was assessed using dual-energy X-ray absorptiometry, micro-computed tomography, histology, and sequential fluorescence labeling. RESULTS: Group E showed a significantly higher volume of newly formed bone than groups A, B, C, and D. Evidence of new dense bone formation in group E was observed histologically. In addition, the immunohistochemical expression of runt-related transcription factor 2 was increased in group E but inhibited in groups A, B, C, and D. Sequential immunofluorescence also showed inhibited mineral apposition in groups A, B, C, and D compared with group E. CONCLUSION: The present study shows that long-term pretreatment with alendronate inhibited calvarial defect healing in osteoporotic rats, and this effect could not be reversed by stopping alendronate, switching to parathyroid hormone, or combining with once-weekly parathyroid hormone.


Assuntos
Alendronato , Densidade Óssea , Absorciometria de Fóton , Alendronato/farmacologia , Animais , Feminino , Hormônio Paratireóideo , Ratos , Microtomografia por Raio-X
20.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128477

RESUMO

The discovery of embryonic cell-free DNA (cfDNA) in spent embryo culture media (SECM) has brought hope for noninvasive preimplantation genetic testing. However, the cellular origins of SECM cfDNA are not sufficiently understood, and methods for determining maternal DNA contamination are limited. Here, we performed whole-genome DNA methylation sequencing for SECM cfDNA. Our results demonstrated that SECM cfDNA was derived from blastocysts, cumulus cells, and polar bodies. We identified the cumulus-specific differentially methylated regions (DMRs) and oocyte/polar body-specific DMRs, and established an algorithm for deducing the cumulus, polar body, and net maternal DNA contamination ratios in SECM. We showed that DNA methylation sequencing accurately detected chromosome aneuploidy in SECM and distinguished SECM samples with low and high false negative rates and gender discordance rates, after integrating the origin analysis. Our work provides insights into the characterization of embryonic DNA in SECM and provides a perspective for noninvasive preimplantation genetic testing in reproductive medicine.


Assuntos
Blastocisto/metabolismo , Ácidos Nucleicos Livres/metabolismo , Metilação de DNA , Aneuploidia , Blastocisto/patologia , Ácidos Nucleicos Livres/genética , Meios de Cultura , Técnicas de Cultura Embrionária , Estudo de Associação Genômica Ampla , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA