RESUMO
Nitrofuran antibiotics have been widely used in the prevention and treatment of animal diseases due to the bactericidal effect. However, the residual and accumulation of their metabolites in vivo can pose serious health hazards to both humans and animals. Although their usage in feeding and process of food-derived animals have been banned in many countries, their metabolic residues are still frequently detected in materials and products of animal-derived food. Many sensitive and effective detection methods have been developed to deal with the problem. In this work, we summarized various immunological methods for the detection of four nitrofuran metabolites based on different types of detection principles and signal molecules. Furthermore, the development trend of detection technology in animal-derived food is prospected.
RESUMO
In this paper, the contents of four typical metals (Pb, Cd, Hg, and As) in asparagus, water, and soil from Chongming Island were quantitatively determined by inductively coupled plasma mass spectrometry (ICP-MS). The contents of these metals in asparagus showed a common rule of Pb > As > Cd > Hg in different harvest seasons and regions. Significant seasonal differences were found in the contents by difference analysis, but no obvious regional differences were observed. Furthermore, the asparagus did not accumulate these four metals from the soil in Chongming Island by the assessment of bio-concentration factor. The asparagus was proved safe by the analysis of single-factor pollution index and Nemerow pollution index. Through combining the analysis of the above indexes and the geological accumulation index, we found that 51.62% of soil samples were mildly polluted by cadmium. The results of health risk analysis showed that the risk value of children was higher than that of adults under oral exposure, but the four metals in asparagus possessed no obvious risk to health. The above assessments illustrate that the daily consumption of asparagus in Chongming Island will not cause potential health impacts. It is of benefit to ensure the quality and economic interests of asparagus planting in Chongming Island through the investigation of this study.
RESUMO
Recently, concerns about heavy metal cadmium ion (Cd2+) residue in asparagus have been frequently reported, and there is an urgent need to develop an effective, sensitive, and rapid detection method for Cd2+. In this study, we innovatively combined molecular microbiology to carry out the comparative screening of Cd2+ chelators in a green, efficient, and specific way. The knock-out putative copper-transporter gene (pca1Δ) yeast strain with high sensitivity to Cd2+ was first used to screen the Cd2+ chelator, and the optimum chelator 1-(4-Isothiocyanatobenzyl)ethylenediamine-N,N,N,N'-tetraacetic acid (ITCBE) was obtained. Additionally, a rapid latex microsphere immunochromatographic assay (LMIA) was developed, based on the obtained monoclonal antibody (mAb) with high specificity and high affinity (affinity constant Ka = 1.83 × 1010 L/mol), to detect Cd2+ in asparagus. The 50% inhibitive concentration (IC50) of test strip was measured to be 0.2 ng/mL, and the limit of detection (IC10) for qualitative (LOD, for visual observation) and quantitative detection (LOQ, for data simulation) of the test strip was 2 ng/mL and 0.054 ng/mL, respectively. In all, the developed mAb-based LMIA shows a great potential for monitoring Cd2+ in asparagus, even in vegetable samples.
RESUMO
In this study, docosahexaenoic acid powder-enhanced gelatin-chitosan edible films were prepared by casting, electrospinning and coaxial electrospinning, respectively. The color (CR), transparency (UV), light transmission (UV), mechanical strength (TA-XT), thermal stability (DSC), crystalline structures (XRD), molecular interactions (FTIR), and microstructure (SEM) were assessed in the analytical research. The results of the research showed that the electrospinning process and the coaxial electrospinning process produced a smooth surface visible to by the naked eye and a uniform granular network structure in a unique film-forming manner, thereby exhibiting good water solubility and mechanical properties. In contrast, the casted film was smooth, transparent, and mechanically strong but poorly water soluble. It was also found that the addition of docosahexaenoic acid powder affected the optical, physical and mechanical properties of the film to varying degrees.
RESUMO
The effects of different thawing methods (air thawing, water soak thawing, refrigeration thawing, low frequency ultrasound thawing at 160, 240, 320 and 400 W) on thawing time, thawing loss, cooking loss, water-holding capacity and texture of frozen squid were investigated. The results showed that thawing loss and thawing time were reduced significantly ( p < 0.05) by ultrasound thawing compared with the water soak thawing and air thawing, but the cooking loss had no significant difference ( p > 0.05). Results of the ultrasound thawing especially at 160 and 240 W on microstructure showed less destructive effect on muscle. The microstructure of the muscle was destroyed significantly after air thawing and water soak thawing compared with the ultrasound thawing, which showed that more fibre structure was broken and the gap between the muscle fibres was increased significantly. Low-field NMR results showed that the ability of immobile water shifting to free water after ultrasound thawing was lower than air thawing and water soak thawing, which was consistent with the results of thawing loss and cooking loss. Ultrasound thawing might be chosen as an alternative method to enhance the quality during thawing process.