Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(6)2018 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-29914196

RESUMO

Ovarian cancer has the highest mortality rate of all gynecological malignancies and the five-year death rate of patients has remained high in the past five decades. Recently, with the rise of cancer stem cells (CSCs) theory, an increasing amount of research has suggested that CSCs give rise to tumor recurrence and metastasis. Theasaponin E1 (TSE1), which was isolated from green tea (Camellia sinensis) seeds, has been proposed to be an effective compound for tumor treatment. However, studies on whether TSE1 takes effect through CSCs have rarely been reported. In this paper, ALDH-positive (ALDH+) ovarian cancer stem-like cells from two platinum-resistant ovarian cancer cell lines A2780/CP70 and OVCAR-3 were used to study the anti-proliferation effect of TSE1 on CSCs. The ALDH+ cells showed significantly stronger sphere forming vitality and stronger cell migration capability. In addition, the stemness marker proteins CD44, Oct-4, Nanog, as well as Bcl-2 and MMP-9 expression levels of ALDH+ cells were upregulated compared with the original tumor cells, indicating that they have certain stem cell characteristics. At the same time, the results showed that TSE1 could inhibit cell proliferation and suspension sphere formation in ALDH+ cells. Our data suggests that TSE1 as a natural compound has the potential to reduce human ovarian cancer mortality. However, more research is still needed to find out the molecular mechanism of TSE1-mediated inhibition of ALDH+ cells and possible drug applications on the disease.


Assuntos
Aldeído Desidrogenase/metabolismo , Células-Tronco Neoplásicas/metabolismo , Ácido Oleanólico/análogos & derivados , Neoplasias Ovarianas/metabolismo , Saponinas/farmacologia , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Saponinas/química , Chá/química
2.
Molecules ; 22(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28974006

RESUMO

Ovarian cancer is regarded as one of the most severe malignancies for women in the world. Death rates have remained steady over the past five decades, due to the undeniable inefficiency of the current treatment in preventing its recurrence and death. The development of new effective alternative agents for ovarian cancer treatment is becoming increasingly critical. Tea saponins (TS) are triterpenoidsaponins composed of sapogenins, glycosides, and organic acids, which possess a variety of pharmacological activities, and have shown promise in the anti-cancer field. Through cell CellTiter 96® Aqueous One Solution Cell Proliferation assay (MTS) assay, colony formation, Hoechst 33342 staining assay, caspase-3/7 activities, flow cytometry for apoptosis analysis, and Western blot, we observed that TS isolated from the seeds of tea plants, Camellia sinensis, exhibited strong anti-proliferation inhibitory effects on OVCAR-3 and A2780/CP70 ovarian cancer cell lines. Our results indicate that TS may selectivity inhibit human ovarian cancer cells by mediating apoptosis through the extrinsic pathway, and initiating anti-angiogenesis via decreased VEGF protein levels in a HIF-1α-dependent pathway. Our data suggests that, in the future, TS could be incorporated into a potential therapeutic agent against human ovarian cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Saponinas/química , Saponinas/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Apoptose , Camellia sinensis/química , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Ácido Oleanólico/química , Extratos Vegetais/química , Saponinas/isolamento & purificação , Sementes/química , Transdução de Sinais , Chá/química , Triterpenos/isolamento & purificação , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos
3.
J Ethnopharmacol ; 192: 67-73, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27374757

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acute alcohol intoxication (AAI) is a frequent emergency, but therapeutic drugs with superior efficacy and safety are lacking. Panax ginseng (PG) and Hippophae rhamnoides (HR) respectively has a wide application as a complementary therapeutic agent in China for the treatment of AAI and liver injury induced by alcohol. We investigated the effects of aqueous extracts from PG and HR (AEPH) on AAI mice and identified its underlying mechanisms. MATERIALS AND METHODS: Models of AAI were induced by intragastric administration of ethanol (8g/kg). Seventy-two Specific pathogen-free (SPF) male Kunming mice were randomly divided into six groups: normal group, positive control group, AEPH of low dosage (100mg/kg) group, AEPH of medium dose (200mg/kg) group, AEPH of high dosage (400mg/kg) group and model group. The mice were treated with metadoxine (MTD, 500mg/kg) and AEPH. Thirty minutes later, the normal group was given normal saline, while the other groups were given ethanol (i.g., 8g/kg). The impact of AEPH was observed. In the same way, another seventy-two Kunming mice were randomly divided into six groups equally. The blood ethanol concentration at 0.5, 1, 1.5, 2, 3 and 6h after ethanol intake was determined by way of gas chromatography. The activity of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and microsomal ethanol oxidase (EO) in liver, and the concentration of ß-endorphin (ß-EP), leucine-enkephalin (LENK) in the brain were determined by enzyme-linked-immunosorbent serologic assay (ELISA). RESULTS: AEPH markedly prolonged alcohol tolerance time and shortened sober-up time after acute ethanol administration. AEPH decreased blood ethanol levels in six tests after ethanol intake. The 7-day survival rate of AEPH group was obviously superior to model group. AEPH increased the activities of ADH, ALDH, and decreased EO activity in liver. The crucial find was that AEPH markedly decreased ß-EP and LENK concentration in the brain. CONCLUSIONS: AEPH can markedly increase the levels of ADH, ALDH, decrease EO activity in liver and decrease the concentration of ß-EP and LENK in the brain to against acute alcohol intoxication in mice.


Assuntos
Intoxicação Alcoólica/tratamento farmacológico , Etanol , Hippophae/química , Fígado/efeitos dos fármacos , Panax/química , Extratos Vegetais/farmacologia , Solventes/química , Água/química , Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Intoxicação Alcoólica/sangue , Aldeído Desidrogenase/metabolismo , Animais , Concentração Alcoólica no Sangue , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Encefalina Leucina/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Fígado/enzimologia , Masculino , Camundongos , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Fatores de Tempo , beta-Endorfina/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-25530778

RESUMO

ASF composed by semen and epimedium herbal is a traditional plant compound that is widely used in the treatment of insomnia. Studies have shown that saponins and flavonoids contained in semen can significantly decrease the content of excitatory neurotransmitter Glu in mice. And the total flavone of YinYangHuo can increase the release of GABA in the anterior periventricular system of rat and increase the affinity of GABA for the receptors GABAA. It can be inferred that their synergism may have effect on the neurotransmitter that causes behavioral sensitization and conditioned place preference in experimental animals and affects their drinking behaviors, which is the starting point of this research. The present study found that ASF can inhibit development and expression of behavioral sensitization induced by ethanol and the development of CPP in mice. We demonstrate the inhibition of ASF on behavioral sensitization partly due to its effect on the mesolimbic neurotransmitter system, including decreasing level of DA and Glu and increasing the content of GABA. It suggested that the ASF may have pharmacological effects in the treatment of alcohol addiction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA