Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679519

RESUMO

A single sensor is prone to decline recognition accuracy in the face of a complex environment, while the existing multi-sensor evidence theory fusion methods do not comprehensively consider the impact of evidence conflict and fuzziness. In this paper, a new evidence weight combination and probability allocation method is proposed, which calculated the degree of evidence fuzziness through the maximum entropy principle, and also considered the impact of evidence conflict on fusing results. The two impact factors were combined to calculate the trusted discount and reallocate the probability function. Finally, Dempster's combination rule was used to fuse every piece of evidence. On this basis, experiments were first conducted to prove that the existing weight combination methods produce results contrary to common sense when handling high-conflicting and high-clarity evidence, and then comparative experiments were conducted to prove the effectiveness of the proposed evidence weight combination and probability allocation method. Moreover, it was verified, on the PAMAP2 data set, that the proposed method can obtain higher fusing accuracy and more reliable fusing results in all kinds of behavior recognition. Compared with the traditional methods and the existing improved methods, the weight allocation method proposed in this paper dynamically adjusts the weight of fuzziness and conflict in the fusing process and improves the fusing accuracy by about 3.3% and 1.7% respectively which solved the limitations of the existing weight combination methods.


Assuntos
Reconhecimento Psicológico , Confiança , Funções Verossimilhança , Entropia
2.
Front Chem ; 10: 1002062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204146

RESUMO

The nature theory of Chinese herbal medicines (CHMs) is the core theory of traditional Chinese medicine (TCM). Cold-hot nature is an important part of CHM nature. It is found that the material basis of cold-hot nature is CHM ingredients. To test the scientific hypothesis that "CHMs with similar cold-hot nature should have similar material basis," we explored an intelligent method for cold-hot nature identification of CHMs based on the feature similarity of CHM ingredients in this work. Sixty one CHMs were selected for cold-hot nature identification. High performance liquid chromatography (HPLC) was used to separate the chemical ingredients of CHMs and extract the feature information of CHM ingredients. A distance metric learning algorithm was then learned to measure the similarity of HPLC fingerprints. With the learned distance metric, cold-hot nature identification scheme (CHNIS) was proposed to build an identification model to evaluate the cold-hot nature of CHMs. A number of experiments were designed to verify the effectiveness and feasibility of the proposed CHNIS model. The total identification accuracy rate of 61 CHMs is 80.3%. The performance of the proposed CHNIS algorithm outperformed that of the compared classical algorithms. The experimental results confirmed our inference that CHMs with similar cold-hot nature had similar composition of substances. The CHNIS model was proved to be effective and feasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA