Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(9): e2307849, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37873917

RESUMO

The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.

2.
J Phys Chem B ; 127(40): 8681-8689, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37782892

RESUMO

The assembly of artificial nano- or microstructured materials with tunable functionalities and structures, mimicking nature's complexity, holds great potential for numerous novel applications. Despite remarkable progress in synthesizing colloidal molecules with diverse functionalities, most current methods, such as the capillarity-assisted particle assembly method, the ionic assembly method based on ionic interactions, or the field-directed assembly strategy based on dipole-dipole interactions, are confined to focusing on achieving symmetrical molecules. But there have been few examples of fabricating asymmetrical colloidal molecules that could exhibit unprecedented optical properties. Here, we introduce a microfluidic and magnetic template-assisted self-assembly protocol that relies mainly on the magnetic dipole-dipole interactions between magnetized magnetic-plasmonic nanoparticles and the mechanical constraints resulting from the specially designed traps. This novel strategy not only requires no specific chemistry but also enables magnetophoretic control of magnetic-plasmonic nanoparticles during the assembly process. Moreover, the assembled asymmetrical colloidal molecules also exhibit interesting hybridized plasmon modes and produce exotic optical properties due to the strong coupling of the individual nanoparticle. The ability to fabricate asymmetrical colloidal molecules based on the bottom-up method opens up a new direction for the fabrication of novel microscale structures for biosensing, patterning, and delivery applications.

3.
Mater Horiz ; 10(12): 5656-5665, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37766462

RESUMO

Thermally conductive materials (TCMs) are highly desirable for thermal management applications to tackle the "overheating" concerns in the electronics industry. Despite recent progress, the development of high performance TCMs integrated with an in-plane thermal conductivity (TC) higher than 50.0 W (m K)-1 and a through-plane TC greater than 10.0 W (m K)-1 is still challenging. Herein, self-standing liquid metal@boron nitride (LM@BN) bulks with ultrahigh in-plane TC and through-plane TC were reported for the first time. In the LM@BN bulks, LM could serve as a bonding and thermal linker among the oriented BN platelets, thus remarkably accelerating heat transfer across the whole system. Benefiting from the formation of a unique structure, the LM@BN bulk achieved an ultrahigh in-plane TC of 82.2 W (m K)-1 and a through-plane TC of 20.6 W (m K)-1, which were among the highest values ever reported for TCMs. Furthermore, the LM@BN bulks exhibited superior compressive and leakage-free performances, with a high compressive strength (5.2 MPa) and without any LM leakage even after being crushed. It was also demonstrated that the excellent TCs of the LM@BN bulks made them effectively cool high-power light emitting diode modules. This work opens up one promising pathway for the development of high-performance TCMs for thermal management in the electronics industry.

4.
J Colloid Interface Sci ; 627: 205-214, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35849854

RESUMO

Polymer-based dielectrics with high thermal conductivity and superb dielectric properties hold great promising for advanced electronic packaging and thermal management application. However, integrating these properties into a single material remains challenging due to their mutually exclusive physical connotations. Here, an ideal dielectric thermally conductive epoxy composite is successfully prepared by incorporating multiscale hybrid fillers of boron nitride microsphere (BNMS) and silicon dioxide coated silicon carbide nanoparticles (SiC@SiO2). In the resultant composites, the microscale BNMS serve as the principal building blocks to establish the thermally conductive network, while the nanoscale SiC@SiO2 as bridges to optimize the heat transfer and suppress the interfacial phonon scattering. In addition, the special core-shell nanoarchitecture of SiC@SiO2 can significantly impede the leakage current and generate a great deal of minicapacitors in the composites. Consequently, favorable thermal conductivity (0.76 W/mK) and dielectric constant (∼8.19) are simultaneously achieved in the BNMS/SiC@SiO2/Epoxy composites without compromising the dielectric loss (∼0.022). The strategy described in this study provides important insights into the design of high-performance dielectric composites by capitalizing on the merits of different particles.

5.
Rev Sci Instrum ; 91(12): 123303, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379956

RESUMO

This paper presents the design and test of a gas-insulated linear transformer driver (LTD) cavity aimed at the Z-pinch experimental device CZ-34. The LTD cavity has a diameter of 2290 mm and a height of 346 mm. It consists of 23 main bricks and 1 trigger brick. Each main brick is comprised of two 100 nF capacitors connected electrically in series with a field-distortion gas switch. The trigger brick is comprised of two 50 nF capacitors connected in series with a compact multi-gap gas switch. All bricks are placed in the cavity filled with compressed SF6 and are pluggable like drawers. The trigger pulse generated by the trigger brick passes through an azimuthal transmission line to the trigger ring and makes the main bricks discharge synchronously. The LTD cavity can deliver ∼1 MA current pulse with a rise time of 115 ns to 0.08 Ω liquid resistance load when the charging voltage is ±100 kV, which is in good agreement with the circuit simulation results. Experimental results demonstrate the successful application of using gas insulation and pluggable bricks. The technical feasibility of the charging configuration, triggering method, and isolation resistors is verified. There is little difference in output performance as return-current rods replaced the outside metal cylinder, which provides a new path for the design of LTD cavities in series.

6.
Zhongguo Yi Liao Qi Xie Za Zhi ; 38(2): 107-9, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-24941772

RESUMO

A new system of blood flow block for control of bleeding in abdominal operation is composed of an abdominal magnetic blocking unit, an abdominal external electromagnet unit and other non-magnetic operation instrument. The abdominal external electromagnetic unit is placed in advance in the operation bed. The abdominal magnetic blocking unit can be placed directly on the ventral of the large vessels when need to blocking the abdominal large vessels during the operation. According to the non-contact suction characteristics of magnetic materials, the two magnetic units will attract each other and compression the vessels. Using this system for vascular occlusion does not need clear exposure and without separating vessel. There is the advantage of rapid, accurate and reliable for the system.


Assuntos
Perda Sanguínea Cirúrgica/prevenção & controle , Desenho de Equipamento , Equipamentos Cirúrgicos , Abdome/irrigação sanguínea , Fenômenos Eletromagnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA