Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38748025

RESUMO

Determining the correlation between the size of a single quantum dot (QD) and its photoluminescence (PL) properties is a challenging task. In the study, we determine the size of each QD by measuring its absorption cross section, which allows for accurate investigation of size-dependent PL blinking mechanisms and volume scaling of the biexciton Auger recombination at the single-particle level. A significant correlation between the blinking mechanism and QD size is observed under low excitation conditions. When the QD size is smaller than their Bohr diameter, single CsPbI3 perovskite QDs tend to exhibit BC-blinking, whereas they tend to exhibit Auger-blinking when the QD size exceeds their Bohr diameter. In addition, by extracting bright-state photons from the PL intensity trajectories, the effects of QD charging and surface defects on the biexcitons are effectively reduced. This allows for a more accurate measurement of the volume scaling of biexciton Auger recombination in weakly confined CsPbI3 perovskite QDs at the single-dot level, revealing a superlinear volume scaling (τXX,Auger ∝ σ1.96).

2.
Sci Bull (Beijing) ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38762435

RESUMO

Quantum Hall effect, the quantized transport phenomenon of electrons under strong magnetic fields, remains one of the hottest research topics in condensed matter physics since its discovery in 2D electronic systems. Recently, as a great advance in the research of quantum Hall effects, the quantum Hall effect in 3D systems, despite its big challenge, has been achieved in the bulk ZrTe5 and Cd3As2 materials. Interestingly, Cd3As2 is a Weyl semimetal, and quantum Hall effect is hosted by the Fermi arc states on opposite surfaces via the Weyl nodes of the bulk, and induced by the unique edge states on the boundaries of the opposite surfaces. However, such intriguing edge state distribution has not yet been experimentally observed. Here, we aim to reveal experimentally the unusual edge states of Fermi arcs in acoustic Weyl system with the aid of pseudo-magnetic field. Benefiting from the macroscopic nature of acoustic crystals, the pseudo-magnetic field is introduced by elaborately designed the gradient on-site energy, and the edge states of Fermi arcs on the boundaries of the opposite surfaces are unambiguously demonstrated in experiments. Our system serves as an ideal and highly tunable platform to explore the Hall physics in 3D system, and has the potential in the application of new acoustic devices.

3.
Sci Rep ; 14(1): 7779, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565605

RESUMO

Transition strengths between states are fundamental physical properties of atomic spectra. The differences in fine structure splitting of certain states are mainly attributed to the angular momentum parts of transition dipole matrix elements. These can be calculated by integrating the wave-functions theoretically and can be accessed by selecting corresponding polarizations of the exciting lasers experimentally. We measured the transition strengths ratios of nD 5 / 2 /nD 3 / 2 via Rydberg electromagnetically induced transparency (EIT) by changing the powers and polarizations of probing and coupling lasers in a room temperature cesium vapor cell. The variation of the ratios on the principal quantum number n which ranges from 40 to 62 is also investigated. Theoretical and experimental results agreed with each other.

4.
Appl Opt ; 63(10): 2561, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568536

RESUMO

This erratum corrects errors in Fig. 4(b) of the original paper, Appl. Opt.63, 1847 (2023)APOPAI0003-693510.1364/AO.510265. This correction does not affect any of the results or conclusions of the aforementioned paper.

5.
Opt Express ; 32(6): 9297-9305, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571167

RESUMO

We perform measurements of microwave spectra of cesium Rydberg 51S1/2 → 51PJ transitions with the linewidth approaching the Fourier limit. A two-photon scheme excites the ground-state atoms to the Rydberg 51S1/2 state, and a weak microwave photon couples the Rydberg transition of 51S1/2 → 51PJ. The hyperfine structure of 51P1/2 can be clearly resolved with a narrow linewidth microwave spectra by using the method of ion detection. Furthermore, we investigate the Zeeman effect of the 51P1/2,3/2 state. The theoretical calculations reproduce the measurement well. Our experimental measurements provide a reliable technical solution for the investigation of high angular momentum Rydberg states, which is conducive to further realizing the coherent manipulation of Rydberg energy levels and improving the sensitivity of electromagnetic field measurement.

6.
Opt Express ; 32(6): 10419-10428, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571254

RESUMO

Twisted stacking of two-dimensional materials with broken inversion symmetry, such as spiral MoTe2 nanopyramids and supertwisted spiral WS2, emerge extremely strong second- and third-harmonic generation. Unlike well-studied nonlinear optical effects in these newly synthesized layered materials, photoluminescence (PL) spectra and exciton information involving their optoelectronic applications remain unknown. Here, we report layer- and power-dependent PL spectra of the supertwisted spiral WS2. The anomalous layer-dependent PL evolutions that PL intensity almost linearly increases with the rise of layer thickness have been determined. Furthermore, from the power-dependent spectra, we find the power exponents of the supertwisted spiral WS2 are smaller than 1, while those of the conventional multilayer WS2 are bigger than 1. These two abnormal phenomena indicate the enlarged interlayer spacing and the decoupling interlayer interaction in the supertwisted spiral WS2. These observations provide insight into PL features in the supertwisted spiral materials and may pave the way for further optoelectronic devices based on the twisted stacking materials.

7.
Appl Opt ; 63(7): 1847-1853, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437289

RESUMO

A method called the optimal demodulated Lorentzian spectrum is employed to precisely quantify the narrowness of a laser's linewidth. This technique relies on the coherent envelope demodulation of a spectrum obtained through short delayed self-heterodyne interferometry. Specifically, we exploit the periodic features within the coherence envelope spectrum to ascertain the delay time of the optical fiber. Furthermore, the disparity in contrast within the coherence envelope spectrum serves as a basis for estimating the laser's linewidth. By creating a plot of the coefficient of determination for the demodulated Lorentzian spectrum fitting in relation to the estimated linewidth values, we identify the existence of an optimal Lorentzian spectrum. The corresponding laser linewidth found closest to the true value is deemed optimal. This method holds particular significance for accurately measuring the linewidth of lasers characterized as narrow or ultranarrow.

8.
Opt Express ; 32(4): 6025-6036, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439315

RESUMO

Quantum imaging based on entangled light sources exhibits enhanced background resistance compared to conventional imaging techniques in low-light conditions. However, direct imaging of dynamic targets remains challenging due to the limited count rate of entangled photons. In this paper, we propose a quantum imaging method based on quantum compressed sensing that leverages the strong correlation characteristics of entangled photons and the randomness inherent in photon pair generation and detection. This approach enables the construction of a compressed sensing system capable of directly imaging high-speed dynamic targets. The results demonstrate that our system successfully achieves imaging of a target rotating at a frequency of 10 kHz, while maintaining an impressive data compression rate of 10-6. This proposed method introduces a pioneering approach for the practical implementation of quantum imaging in real-world scenarios.

9.
Opt Express ; 32(5): 8379-8388, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439494

RESUMO

Governed by the hairy ball theorem, classical antennas with isotropic responses to linearly polarized radio waves are unrealizable. Also, their calibrations face a causal dilemma. Therefore, radio wave measurements based on classical antennas are challenging to achieve high accuracy. This work shows that the antenna based on Rydberg atoms can theoretically achieve an ideal isotropic response to linearly polarized radio waves; that is, it has zero isotropic deviation. Although this conclusion is straightforward, it is not theoretically clear when complex atomic energy levels are taken into account. Experimental results of isotropic deviation within 5 dB and 0.3 dB possible with optimization in microwave and terahertz wave measurements support the theory and is at least 15 dB improvement than the classical omnidirectional antenna. Combined with the SI traceable and ultrawideband property, the ideal isotropic response will make radio wave measurement based on atomic antenna much more accurate and reliable than the traditional method. This isotropic atomic antenna is an excellent example of what a tailored quantum sensor can realize, but a classical sensor cannot. It has crucial applications in fields such as radio wave electrometry.

10.
Light Sci Appl ; 13(1): 77, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514679

RESUMO

The extension of dual-comb spectroscopy (DCS) to all wavelengths of light along with its ability to provide ultra-large dynamic range and ultra-high spectral resolution, renders it extremely useful for a diverse array of applications in physics, chemistry, atmospheric science, space science, as well as medical applications. In this work, we report on an innovative technique of quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy (QEMR-PAS), in which the beat frequency response from a dual comb is frequency down-converted into the audio frequency domain. In this way, gas molecules act as an optical-acoustic converter through the photoacoustic effect, generating heterodyne sound waves. Unlike conventional DCS, where the light wave is detected by a wavelength-dependent photoreceiver, QEMR-PAS employs a quartz tuning fork (QTF) as a high-Q sound transducer and works in conjunction with a phase-sensitive detector to extract the resonant sound component from the multiple heterodyne acoustic tones, resulting in a straightforward and low-cost hardware configuration. This novel QEMR-PAS technique enables wavelength-independent DCS detection for gas sensing, providing an unprecedented dynamic range of 63 dB, a remarkable spectral resolution of 43 MHz (or ~0.3 pm), and a prominent noise equivalent absorption of 5.99 × 10-6 cm-1·Hz-1/2.

12.
Opt Lett ; 49(4): 956, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359226

RESUMO

This publisher's note contains a correction to Opt. Lett.49, 202 (2024)10.1364/OL.507004.

13.
Phys Rev Lett ; 132(3): 036603, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307045

RESUMO

Local density of states (LDOS) is emerging as powerful means of exploring classical-wave topological phases. However, the current LDOS detection method remains rare and merely works for static situations. Here, we introduce a generic dynamical method to detect both the static and Floquet LDOS, based on an elegant connection between dynamics of chiral density and local spectral densities. Moreover, we find that the Floquet LDOS allows to measure out Floquet quasienergy spectra and identify topological π modes. As an example, we demonstrate that both the static and Floquet higher-order topological phase can be universally identified via LDOS detection, regardless of whether the topological corner modes are in energy gaps, bands, or continuous energy spectra without band gaps. Our study opens a new avenue utilizing dynamics to detect topological spectral densities and provides a universal approach of identifying static and Floquet topological phases.

14.
Opt Lett ; 49(2): 202-205, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194528

RESUMO

A novel, to the best of our knowledge, noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) has been developed, utilizing optical feedback for laser-to-cavity locking with a common distributed-feedback diode laser. The system incorporates active control of the feedback phase and feedforward control of the laser current, allowing for consecutive laser frequency detuning by scanning a piezoelectric transducer (PZT) attached to the cavity. To enhance the fidelity of the spectroscopic signal, wavelength-modulated (wm) NICE-OHMS is implemented. Benefiting from the optical feedback, a modulation frequency of 15 kHz is achieved, surpassing the frequencies typically used in traditional NICE-OHMS setups. Then, the sub-Doppler-broadened wm-NICE-OHMS signal of acetylene at 1.53 µm is observed. A seven-fold improvement in signal to noise ratio has been demonstrated compared to NICE-OHMS alone and a limit of detection of 6.1 × 10-10cm-1 is achieved.

15.
Anal Chem ; 96(1): 547-553, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38155434

RESUMO

Hydrogen (H2) fuel cells have been developed as an environmentally benign, low-carbon, and efficient energy option in the current period of promoting low-carbon activities, which offer a compelling means to reduce carbon emissions. However, the presence of carbon monoxide (CO) impurities in H2 may potentially damage the fuel cell's anode. As a result, monitoring of the CO levels in fuel cells has become a significant area of research. In this paper, a novel photoacoustic sensor is developed based on photoacoustic heterodyne technology. The sensor combines a 4.61 µm mid-infrared quantum cascade laser with a low-noise differential photoacoustic cell. This combination enables fast, real-time online detection of CO impurity concentrations in H2. Notably, the sensor requires no wavelength locking to monitor CO online in real-time and produces a single effective signal with a period of only 15 ms. Furthermore, the sensor's performance was thoroughly evaluated in terms of detection sensitivity, linearity, and long-term stability. The minimum detection limit of 11 ppb was obtained at an optimal time constant of 1 s.

16.
Small ; : e2309134, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150666

RESUMO

Almost all colloidal quantum dots (QDs) exhibit undesired photoluminescence (PL) blinking, which poses a significant obstacle to their use in numerous luminescence applications. An in-depth study of the blinking behavior, along with the associated mechanisms, can provide critical opportunities for fabricating high-quality QDs for diverse applications. Here the blinking of a large series of colloidal QDs is investigated with different surface ligands, particle sizes, shell thicknesses, and compositions. It is found that the blinking behavior of single alloyed CdSe/ZnS QDs with a shell thickness of up to 2 nm undergoes an irreversible conversion from Auger-blinking to band-edge carrier blinking (BC-blinking). Contrastingly, single perovskite QDs with particle sizes smaller than their Bohr diameters exhibit reversible conversion between BC-blinking and more pronounced Auger-blinking. Changes in the effective trapping sites under different excitation conditions are found to be responsible for the blinking type conversions. Additionally, changes in shell thickness and particle size of QDs have a significant effect on the blinking type conversions due to altered wavefunction overlap between excitons and effective trapping sites. This study elucidates the discrepancies in the blinking behavior of various QD samples observed in previous reports and provides deeper understanding of the mechanisms underlying diverse types of blinking.

17.
ACS Appl Mater Interfaces ; 15(46): 53688-53696, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37956364

RESUMO

The tunable optical display is vital for many application fields in telecommunications, sensors, and military devices. However, most optical materials have a strong wavelength dependence, which limits their spectral operation range. In this work, we develop an electrically reconfigurable optical medium based on graphene, demonstrating a cycle-controlled display covering the electromagnetic spectrum from the visible to the infrared wavelength. Through an electro-intercalation method, the graphene-based surface enables rich colors from gray to dark blue to dark red to yellow, and the response time is about 1 min from the start gray color to the final yellow color. Simultaneously, it exhibits a remarkable change in infrared emissivity (from 0.63 to 0.80 reduction to 0.20) with a response time of 1 s. This modification of optical properties of lithiated multilayer graphene (MLG) is the increase of Fermi energy (Ef) due to the charge transfer from lithium (Li) to graphene layers, which causes changes in interband and intraband electronic transitions. Our findings imply potential value in fabricating multispectral optical materials with high tunability.

18.
J Chem Phys ; 159(19)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966003

RESUMO

We report the experimental measurements of the decay rate of polar cesium nD5/2 - 6S1/2 Rydberg-ground molecules with a large principal quantum number range of 35 ≤ n ≤ 40. Rydberg molecules are prepared employing the method of two-photon photoassociation and the molecular (atomic) ions, due to autoionization (blackbody photoionization), are detected with a microchannel plate detector. The decay rate Γ of the vibrational ground state of the deep and shadow bound molecules for triplet (TΣ) and mixed singlet-triplet (S,TΣ) are measured by fitting the molecular population with the exponential function. Comparing with the parent atom, the decay rate of the polar Rydberg-ground molecule shows an obvious increase with a magnitude of a few µs. The possible dissociation mechanism of polar Rydberg-ground molecules including a collisional decay, blackbody induced decay, and coupling of adjacent Rydberg states and tunneling decay are discussed in detail. The theoretical model is induced to simulate the measurements, showing agreement.

19.
Nat Commun ; 14(1): 7560, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985772

RESUMO

Quantum matter interacting with gauge fields, an outstanding paradigm in modern physics, underlies the description of various physical systems. Engineering artificial gauge fields in ultracold atoms offers a highly controllable access to the exotic many-body phenomena in these systems, and has stimulated intense interest. Here we implement a triangular flux ladder in the momentum space of ultracold 133Cs atoms, and study the chiral dynamics under tunable interactions. Through measurements of the site-resolved density evolutions, we reveal how the competition between interaction and flux in the frustrated triangular geometry gives rise to flux-dependent localization and biased chiral dynamics. For the latter in particular, the symmetry between the two legs is dynamically broken, which can be attributed to frustration. We then characterize typical dynamic patterns using complementary observables. Our work opens the avenue toward exploring correlated transport in frustrated geometries, where the interplay between interactions and gauge fields plays a key role.

20.
Appl Opt ; 62(27): 7169-7174, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37855572

RESUMO

We demonstrate a simple, low-cost, and well-performing optical phase-locked loop (OPLL) circuit with ADF4007 as the phase frequency detector chip to achieve frequency and phase locking of two semiconductor lasers in both short and long terms. The measured short term performances, determined by fast feedback, show that the spectral width of the beat signal is low, around 1 Hz, and the residual phasing error is 0.04r a d 2. The measured long term performances, determined by slow feedback, show that the drift of the central frequency of the beat signal is within 1.1(1) Hz in 2 h, and the derived Allan deviation is less than 0.4 Hz within all integration times of up to 1000 s. The phase noise measurement shows a suppression of phase noise of the beat signal from free running to closed-loop OPLLs in a Fourier frequency of 10 Hz-20 kHz. These measurements show that the OPLL circuit we modified can fit most scientific experiments requiring a fixed frequency difference and phase coherence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA