Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 211: 108665, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38735155

RESUMO

Budding mutations are known to cause metabolic changes in new jujube varieties; however, the mechanisms underlying these changes are still unclear. Here, we performed muti-omics analysis to decipher the detailed metabolic landscape of "Saimisu 1" (S1) and its budding mutation line "Saimisu 2" (S2) at all fruit stages. We found that the genes involved in the biosyntheses of flavonoids, phenylpropanoids, and amino acids were upregulated in S2 fruits at all stages, especially PAL and DFR, resulting in increased accumulation of related compounds in S2 mature fruits. Further co-expression regulatory network analysis showed that the transcription factors MYB41 and bHLH93 potentially regulated the expression of PAL and DFR, respectively, by directly binding to their promoters. Moreover, the overexpression of MYB41 or bHLH93 induced their expression levels to redirect the flux of the flavonoid biosynthetic pathway, eventually leading to high levels of related compounds in S2 fruits. Overall, this study revealed the metabolic variations between S1 and S2 and contributed to the understanding of the mechanisms underlying budding mutation-mediated metabolic variations in plants, eventually providing the basis for breeding excellent jujube varieties using budding mutation lines.

2.
J Integr Plant Biol ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558522

RESUMO

It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.

3.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474080

RESUMO

Fleshy fruit ripening is a unique biological process that involves dramatic changes in a diverse array of cellular metabolisms. The regulation of these metabolisms is essentially mediated by cellular signal transduction of internal (e.g., hormones) and external cues (i.e., environmental stimuli). Mitogen-activated protein kinase (MAPK) signaling pathways play crucial roles in a diverse array of biological processes, such as plant growth, development and biotic/abiotic responses. Accumulating evidence suggests that MAPK signaling pathways are also implicated in fruit ripening and quality formation. However, while MAPK signaling has been extensively reviewed in Arabidopsis and some crop plants, the comprehensive picture of how MAPK signaling regulates fruit ripening and quality formation remains unclear. In this review, we summarize and discuss research in this area. We first summarize recent studies on the expression patterns of related kinase members in relation to fruit development and ripening and then summarize and discuss the crucial evidence of the involvement of MAPK signaling in fruit ripening and quality formation. Finally, we propose several perspectives, highlighting the research matters and questions that should be afforded particular attention in future studies.


Assuntos
Frutas , Desenvolvimento Vegetal , Frutas/metabolismo , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835462

RESUMO

Plant cell walls are essential structures for plant growth and development as well as plant adaptation to environmental stresses. Thus, plants have evolved signaling mechanisms to monitor the changes in the cell wall structure, triggering compensatory changes to sustain cell wall integrity (CWI). CWI signaling can be initiated in response to environmental and developmental signals. However, while environmental stress-associated CWI signaling has been extensively studied and reviewed, less attention has been paid to CWI signaling in relation to plant growth and development under normal conditions. Fleshy fruit development and ripening is a unique process in which dramatic alternations occur in cell wall architecture. Emerging evidence suggests that CWI signaling plays a pivotal role in fruit ripening. In this review, we summarize and discuss the CWI signaling in relation to fruit ripening, which will include cell wall fragment signaling, calcium signaling, and NO signaling, as well as Receptor-Like Protein Kinase (RLKs) signaling with an emphasis on the signaling of FERONIA and THESEUS, two members of RLKs that may act as potential CWI sensors in the modulation of hormonal signal origination and transduction in fruit development and ripening.


Assuntos
Frutas , Transdução de Sinais , Frutas/metabolismo , Plantas/metabolismo , Proteínas Quinases/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
5.
Hortic Res ; 9: uhac190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329721

RESUMO

Fleshy fruit ripening involves changes in numerous cellular processes and metabolic pathways, resulting from the coordinated actions of diverse classes of structural and regulatory proteins. These include enzymes, transporters and complex signal transduction systems. Many aspects of the signaling machinery that orchestrates the ripening of climacteric fruits, such as tomato (Solanum lycopersicum), have been elucidated, but less is known about analogous processes in non-climacteric fruits. The latter include strawberry (Fragaria x ananassa) and grape (Vitis vinifera), both of which are used as non-climacteric fruit experimental model systems, although they originate from different organs: the grape berry is a true fruit derived from the ovary, while strawberry is an accessory fruit that is derived from the floral receptacle. In this article, we summarize insights into the signal transduction events involved in strawberry and grape berry ripening. We highlight the mechanisms underlying non-climacteric fruit ripening, the multiple primary signals and their integrated action, individual signaling components, pathways and their crosstalk, as well as the associated transcription factors and their signaling output.

6.
Front Plant Sci ; 13: 923484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755638

RESUMO

Fleshy fruits have been traditionally categorized into climacteric (CL) and non-climacteric (NC) groups. CL fruits share a common ripening mechanism of hormonal regulation, i.e., the ethylene regulation, whereas whether NC fruits share a common mechanism remains controversial. Abscisic acid (ABA) has been commonly thought to be a key regulator in NC fruit ripening; however, besides ABA, many other hormones have been increasingly suggested to play crucial roles in NC fruit ripening. NC fruits vary greatly in their organ origin, constitution, and structure. Development of different organs may be different in the pattern of hormonal regulation. It has been well demonstrated that the growth and development of strawberry, the model of NC fruits, is largely controlled by a hormonal communication between the achenes and receptacle; however, not all NC fruits contain achenes. Accordingly, it is particularly important to understand whether strawberry is indeed able to represent a universal mechanism for the hormonal regulation of NC fruit ripening. In this mini-review, we summarized the recent research advance on the hormone regulation of NC ripening in relation to fruit organ origination, constitution, and structure, whereby analyzing and discussing whether NC fruits may share a common mechanism of hormonal regulation.

7.
Plant Physiol ; 189(2): 1037-1049, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35238391

RESUMO

The regulatory mechanisms that link WRKY gene expression to fruit ripening are largely unknown. Using transgenic approaches, we showed that a WRKY gene from wild strawberry (Fragaria vesca), FvWRKY48, may be involved in fruit softening and ripening. We showed that FvWRKY48 is localized to the nucleus and that degradation of the pectin cell wall polymer homogalacturonan, which is present in the middle lamella and tricellular junction zones of the fruit, was greater in FvWRKY48-OE (overexpressing) fruits than in empty vector (EV)-transformed fruits and less substantial in FvWRKY48-RNAi (RNA interference) fruits. Transcriptomic analysis indicated that the expression of pectate lyase A (FvPLA) was significantly downregulated in the FvWRKY48-RNAi receptacle. We determined that FvWRKY48 bound to the FvPLA promoter via a W-box element through yeast one-hybrid, electrophoretic mobility shift, and chromatin immunoprecipitation quantitative polymerase chain reaction experiments, and ß-glucosidase activity assays suggested that this binding promotes pectate lyase activity. In addition, softening and pectin degradation were more intense in FvPLA-OE fruit than in EV fruit, and the middle lamella and tricellular junction zones were denser in FvPLA-RNAi fruit than in EV fruit. We speculated that FvWRKY48 maybe increase the expression of FvPLA, resulting in pectin degradation and fruit softening.


Assuntos
Fragaria , Parede Celular/genética , Parede Celular/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeo-Liases
8.
New Phytol ; 234(4): 1262-1277, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182082

RESUMO

Ethylene (ETH) controls climacteric fruit ripening and can be triggered by osmotic stress. However, the mechanism regulating ETH biosynthesis during fruit ripening and under osmotic stress is largely unknown in apple (Malus domestica). Here, we explored the roles of SnRK2 protein kinases in ETH biosynthesis related to fruit ripening and osmoregulation. We identified the substrates of MdSnRK2-I using phosphorylation analysis techniques. Finally, we identified the MdSnRK2-I-mediated signaling pathway for ETH biosynthesis related to fruit ripening and osmoregulation. The activity of two MdSnRK2-I members, MdSnRK2.4 and MdSnRK2.9, was significantly upregulated during ripening or following mannitol treatment. Overexpression of MdSnRK2-I increased ETH biosynthesis under normal and osmotic conditions in apple fruit. MdSnRK2-I phosphorylated the transcription factors MdHB1 and MdHB2 to enhance their protein stability and transcriptional activity on MdACO1. MdSnRK2-I also interacted with MdACS1 and increased its protein stability through two phosphorylation sites. The increased MdACO1 expression and MdACS1 protein stability resulted in higher ETH production in apple fruit. In addition, heterologous expression of MdSnRK2-I or manipulation of SlSnRK2-I expression in tomato (Solanum lycopersicum) fruit altered fruit ripening and ETH biosynthesis. We established that MdSnRK2-I functions in fruit ripening and osmoregulation, and identified the MdSnRK2-I-mediated signaling pathway controlling ETH biosynthesis.


Assuntos
Malus , Solanum lycopersicum , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Hortic Res ; 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043192

RESUMO

Abscisic acid (ABA) plays a major role in the regulation of strawberry fruit ripening; however, the origin of the ABA signal is largely unknown. Here, we report an autocatalytic mechanism for ABA biosynthesis and its synergistic interaction with the auxin to regulate strawberry fruit ripening. We demonstrate that ABA biosynthesis is self-induced in the achenes, but not in the receptacle, which results its substantial accumulation during ripening. ABA was found to regulate both IAA transport and biosynthesis, thereby modulating IAA content during both early fruit growth and later during ripening. Taken together, these results reveal the origins of the ABA signal and demonstrate the importance of its coordinated action with IAA in the regulation of strawberry fruit development and ripening.

10.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638834

RESUMO

Strawberry (Fragaria × ananassa) fruit ripening is regulated by a complex of cellular signal transduction networks, in which protein kinases are key components. Here, we report a relatively simple method for assaying protein kinase activity in vivo and specifically its application to study the kinase, FaMPK6, signaling in strawberry fruit. Green fluorescent protein (GFP)-tagged FaMPK6 was transiently expressed in strawberry fruit and after stimuli were applied to the fruit it was precipitated using an anti-GFP antibody. The precipitated kinase activity was measured in vitro using 32P-ATP and myelin basic protein (MBP) as substrates. We also report that FaMPK6 is not involved in the abscisic acid (ABA) signaling cascade, which is closely associated with FaMPK6 signaling in other plant species. However, methyl jasmonate (MeJA), low temperature, and high salt treatments were all found to activate FaMPK6. Transient manipulation of FaMPK6 expression was observed to cause significant changes in the expression patterns of 2749 genes, of which 264 were associated with MeJA signaling. The data also suggest a role for FaMPK6 in modulating cell wall metabolism during fruit ripening. Taken together, the presented method is powerful and its use will contribute to a profound exploration to the signaling mechanism of strawberry fruit ripening.


Assuntos
Fragaria/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fragaria/genética , Frutas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas de Plantas/genética
13.
Hortic Res ; 8(1): 60, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33750770

RESUMO

An effector-reporter system is a powerful tool used to study cellular signal transduction, but this technique has been traditionally used in protoplasts. A similar system to study cellular signal transduction in fruits has not yet been established. In this study, we aimed to establish an effector-reporter system for strawberry fruit, a model nonclimacteric fruit. We first investigated the characteristics of transient gene expression in strawberry fruits and found marked variation in gene expression levels among individual fruits, and this variation has complicated the establishment of a technical system. To overcome this difficulty, we investigated a sampling strategy based on a statistical analysis of the activity pattern of four different reporters (GUS, GFP, FLuc, and RLuc) among individual fruits and combinations of pairs of reporters (GUS/GFP and RLuc/FLuc). Based on an optimized sampling strategy, we finally established a step-by step protocol for the effector/reporter assay. Using FaMYB10 and FaWRKY71 as the effectors and GUS driven by the FaCHS promoter as the reporter, we demonstrated that this effector/reporter system was practical and reliable. This effector/reporter technique will contribute to an in-depth exploration of the signaling mechanism for the regulation of strawberry fruit ripening.

14.
Plant Physiol Biochem ; 154: 54-65, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32526611

RESUMO

Although fruit expansion during ripening has been extensively studied, the structural and metabolic mechanisms remain largely unknown. Here, we report the critical roles of cell separation and cell wall metabolism in the coordinated regulation of fruit expansion in Fragaria vesca. Anatomical observations indicated that a syndrome of cell separation occurred from the very earliest stage of fruit set. Cell separation led to an increase in apoplastic space, and the time course of this increase coincided with the period of fruit development and ripening. Moreover, massive cellulose disassembly occurred when cells were fully separated, which coincided with the expansion of cell and fruit volume. Consistent with the anatomical observations, both histochemistry and composition analysis indicated correlations between cell separation and the cell wall metabolism. These observations suggest that cell separation, cell elongation and cell wall disassembly occur simultaneously during fruit ripening in Fragaria vesca.


Assuntos
Parede Celular/fisiologia , Fragaria/fisiologia , Frutas/fisiologia
15.
Hortic Res ; 6: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069083

RESUMO

Strawberry is increasingly used as a model plant for research on fruit growth and development. The transient gene manipulation (TGM) technique is widely used to determine the function of plant genes, including those in strawberry fruits. However, its reliable application for the precise identification of gene function has been difficult owing to the lack of conditional optimization. In this study, we found that successful transient gene manipulation requires optimization, with the vector type, temperature, and fruit developmental stage being three major factors determining success. Notably, we found that transient gene manipulation was feasible only from the large green fruit stage onwards, making it especially suitable for identifying genes involved in strawberry fruit ripening. Furthermore, we established a method called percentage difference of phenotype (PDP), in which the functional effect of a gene could be precisely and efficiently identified in strawberry fruits. This method can be used to estimate the functional effect of a gene as a value from 0 to 100%, such that different genes can be quantitatively compared for their relative abilities to regulate fruit ripening. This study provides a useful tool for accelerating research on the molecular basis of strawberry fruit ripening.

17.
J Exp Bot ; 69(20): 4805-4820, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30085079

RESUMO

Sugar and acid metabolism are critical for fruit ripening and quality formation, but the underlying regulatory mechanisms are largely unknown. Here, we identified a transcriptional repressor, FaMYB44.2, that regulates sugar and acid accumulation in strawberry (Fragaria × ananassa 'Benihoppe') receptacles. We transiently expressed FaMYB44.2 in strawberry fruit and conducted metabolic and molecular analyses to explore the role of FaMYB44.2 in sugar and acid accumulation in strawberry. We found that FaMYB44.2 negatively regulates soluble sugar accumulation and malic acid content and represses the expression of numerous structural genes, including FaSPS3, a key gene in sucrose accumulation. From the white fruit stage onwards, the repressive effect of FaMYB44.2 on FaSPS3 is reversed by FaMYB10, which positively regulates anthocyanin accumulation. Our results indicate that FaMYB10 suppresses FaMYB44.2 expression; weakens the interaction between FaMYB44.2 and its co-repressor, FabHLH3; and cooperates with FabHLH3 to activate the expression of FaSPS3. The interplay between FaMYB10 and FaMYB44.2 results in sucrose accumulation in ripe strawberry fruits. In addition, the repressive effect of FaMYB44.2 on sucrose accumulation is enhanced by jasmonic acid. This study provides new insights into the regulatory mechanisms of sucrose accumulation and sheds light on the interplay between regulatory proteins during strawberry fruit ripening and quality formation.


Assuntos
Fragaria/genética , Fragaria/metabolismo , Proteínas de Plantas/genética , Sacarose/metabolismo , Fatores de Transcrição/genética , Sequência de Aminoácidos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
18.
Plant Signal Behav ; 12(12): e1366397, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-29215944

RESUMO

Ripening of fleshy fruits is a complex process that involves dramatic changes in color, texture, flavor, and aroma, which is essentially regulated by multiple hormone signals. Although the metabolic mechanisms for the regulation of fruit development and ripening have been studied extensively, little is known about the signaling mechanisms underlying this process. FERONIA has been increasingly suggested to be implicated in multiple signaling pathways. In a recent publication, we showed that a FERONIA/FER -like receptor kinase, FaMRLK47, playes an important role in the regulation of fruit ripening in strawberry (Fragaria × ananassa, a typical non-climacteric fruit) fruit. Over-expression orRNAi-mediated down regulation of FaMRLK47 caused a delay or acceleration, respectively, of fruit ripening progress. Meanwhile, overexpression orRNAi-mediated down regulation of FaMRLK47 caused a decrease or increase, respectively, in the ABA-induced expression of a series of ripening-related genes. More recently, we also found that MdFERL1, a FERONIA/FER-like receptor kinase in tomato plant, was implicated in the regulation of tomato fruit ripening via modulating ethylene production. We propose that FERONIA/FER-like receptor kinases may function to regulate fruit development and ripening via integrate multiple signaling pathways in both climacteric and non-climacteric fruits.


Assuntos
Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Etilenos , Modelos Biológicos
19.
Front Plant Sci ; 8: 1406, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848599

RESUMO

Ethylene has long been known to be a critical signal controlling the ripening of climacteric fruits; however, the signaling mechanism underlying ethylene production during fruit development is unknown. Here, we report that two FERONIA-like receptor kinases (FERLs) regulate fruit ripening by modulating ethylene production in the climacteric fruit, apple (Malus×domestica). Bioinformatic analysis indicated that the apple genome contains 14 members of the FER family (MdFERL1-17), of these 17 FERLs, MdFERL6 was expressed at the highest level in fruit. Heterologous expression of MdFERL6 or MdFERL1, the apple homolog of Arabidopsis FER, in another climacteric fruit, tomato (Solanum lycopersicum) fruit delayed ripening and suppressed ethylene production. Overexpression and antisense expression of MdFERL6 in apple fruit calli inhibited and promoted ethylene production, respectively. Additionally, virus-induced gene silencing (VIGS) of SlFERL1, the tomato homolog of FER, promoted tomato fruit ripening and ethylene production. Both MdFERL6 and MdFERL1 physically interacted with MdSAMS (S-adenosylmethionine synthase), a key enzyme in the ethylene biosynthesis pathway. MdFERL6 was expressed at high levels during early fruit development, but dramatically declined when fruit ripening commenced, implying that MdFERL6 might limit ethylene production prior to fruit development and the ethylene production burst during fruit ripening. These results indicate that FERLs regulate apple and tomato fruit ripening, shedding light on the molecular mechanisms underlying ripening in climacteric fruit.

20.
Front Plant Sci ; 8: 1099, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28702036

RESUMO

Ripening of fleshy fruits is controlled by a series of intricate signaling processes. Here, we report a FERONIA/FER-like receptor kinase, FaMRLK47, that regulates both strawberry (Fragaria × ananassa) fruit ripening and quality formation. Overexpression and RNAi-mediated downregulation of FaMRLK47 delayed and accelerated fruit ripening, respectively. We showed that FaMRLK47 physically interacts with FaABI1, a negative regulator of abscisic acid (ABA) signaling, and demonstrated that FaMRLK47 regulates fruit ripening by modulating ABA signaling, a major pathway governing strawberry fruit ripening. In accordance with these findings, overexpression and RNAi-mediated downregulation of FaMRLK47 caused a decrease and increase, respectively, in the ABA-induced expression of a series of ripening-related genes. Additionally, overexpression and RNAi-mediated downregulation of FaMRLK47 resulted in an increase and decrease in sucrose content, respectively, as compared with control fruits, and respectively promoted and inhibited the expression of genes in the sucrose biosynthesis pathway (FaSS and FaSPS). Collectively, this study demonstrates that FaMRLK47 is an important regulator of strawberry fruit ripening and quality formation, and sheds light on the signaling mechanisms underlying strawberry fruit development and ripening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA