Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1444117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161898

RESUMO

Objective: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease globally, characterized by the accumulation of lipids, oxidative stress, and mitochondrial dysfunction in the liver. Celastrus orbiculatus Thunb. (COT) and its active compound celastrol (CEL) have demonstrated antioxidant and anti-inflammatory properties. Our prior research has shown the beneficial effects of COT in mitigating NAFLD induced by a high-fat diet (HFD) in guinea pigs by reducing hepatic lipid levels and inhibiting oxidative stress. This study further assessed the effects of COT on NAFLD and explored its underlying mitochondria-related mechanisms. Methods: COT extract or CEL was administered as an intervention in C57BL/6J mice fed a HFD or in HepG2 cells treated with sodium oleate. Oral glucose tolerance test, biochemical parameters including liver enzymes, blood lipid, and pro-inflammatory factors, and steatosis were evaluated. Meanwhile, mitochondrial ultrastructure and indicators related to oxidative stress were tested. Furthermore, regulators of mitochondrial function were measured using RT-qPCR and Western blot. Results: The findings demonstrated significant reductions in hepatic steatosis, oxidative stress, and inflammation associated with NAFLD in both experimental models following treatment with COT extract or CEL. Additionally, improvements were observed in mitochondrial structure, ATP content, and ATPase activity. This improvement can be attributed to the significant upregulation of mRNA and protein expression levels of key regulators including FGF21, AMPK, PGC-1α, PPARγ, and SIRT3. Conclusion: These findings suggest that COT may enhance mitochondrial function by activating the FGF21/AMPK/PGC-1α signaling pathway to mitigate NAFLD, which indicated that COT has the potential to target mitochondria and serve as a novel therapeutic option for NAFLD.

2.
Eur J Pharmacol ; 947: 175698, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36997047

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a multisystem metabolic disease associated with gut microflora dysbiosis and inflammation. Hydrogen (H2) is a novel and effective antiinflammatory agent. The present study was aimed to clarify the effects of 4% H2 inhalation on NAFLD and its mechanism of action. Sprague-Dawley rats were fed a high-fat diet for 10 weeks to induce NAFLD. Rats in treatment group inhaled 4% H2 each day for 2 h. The protective effects on hepatic histopathology, glucose tolerance, inflammatory markers, and intestinal epithelial tight junctions were assessed. Transcriptome sequencing of liver and 16 S-seq of cecal contents were also performed to explore the related mechanisms of H2 inhalation. H2 improved the hepatic histological changes and glucose tolerance, decreased the liver function parameters of plasma alanine aminotransferase and aspartate aminotransferase, and relieved liver inflammation. Liver transcriptomic data suggested that H2 treatment significantly downregulated inflammatory response genes, and the lipopolysaccharide (LPS)/Toll-like receptor (TLR) 4/nuclear transcription factor kappa B (NF-κB) signaling pathway might be involved, and the expressions of critical proteins were further validated. Meanwhile, the plasma LPS level was significantly decreased by the H2 intervention. H2 also improved the intestinal tight junction barrier by enhancing the expressions of zonula occludens-1 and occluding. Based on 16S rRNA sequencing, H2 altered the composition of gut microbiota, improving the relative abundance of Bacteroidetes-to-Firmicutes. Collectively, our data show that H2 could prevent NAFLD induced by high-fat diet, and the anti-NAFLD effect is associated with the modulation of gut microbiota and inhibition of LPS/TLR4/NF-κB inflammatory pathway.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , RNA Ribossômico 16S , Ratos Sprague-Dawley , Fígado , Inflamação/metabolismo , Glucose/metabolismo
3.
J Pharm Pharmacol ; 75(5): 677-685, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840643

RESUMO

OBJECTIVES: This study was aimed to evaluate the protective effects of phenylethanoid glycosides extract from Cistanche deserticola against atherosclerosis and its molecular mechanism. METHODS: Total phenylethanoid glycosides were extracted and purified from C. deserticola, and the C. deserticola extract (CDE) was used to treat a mice model of atherosclerosis. KEY FINDINGS: CDE containing 81.00% total phenylethanoid glycosides, with the contents of echinacoside and acteoside being 31.36% and 7.23%, respectively. A 13-week of CDE supplementation (1000 mg/kg body weight/day) significantly reduced atherosclerotic lesions in the aortic sinus and entire aorta in ApoE-/- mice fed with a high-fat diet. In addition, varying doses of CDE (250, 500 and 1000 mg/kg body weight/day) lowered plasma total cholesterol, triglyceride and non-high-density lipoprotein cholesterol levels. Transcriptomic analysis of the small intestine revealed the changes enriched in cholesterol metabolic pathway and the activation of Abca1 gene. Further validation using real-time quantitative PCR and western blot confirmed that CDE significantly increased the mRNA levels and protein expressions of ABCA1, LXRα and PPARγ. CONCLUSIONS: Our results demonstrate the beneficial effects of C. deserticola on atherosclerotic plaques and lipid homeostasis, and it is, at least partially, by activating PPARγ-LXRα-ABCA1 pathway in small intestine.


Assuntos
Aterosclerose , Cistanche , Glicosídeos , Animais , Camundongos , Apolipoproteínas/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Transportador 1 de Cassete de Ligação de ATP/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Peso Corporal , Colesterol/metabolismo , Cistanche/química , Glicosídeos/química , Glicosídeos/farmacologia , Camundongos Knockout para ApoE , Extratos Vegetais/química , Extratos Vegetais/farmacologia , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Receptores X do Fígado/efeitos dos fármacos , Receptores X do Fígado/metabolismo
4.
Front Pharmacol ; 13: 1025487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278221

RESUMO

Objective: To explore the effect of a low-dose hydrogen-oxygen (H2-O2) mixture inhalation in midlife/older adults with hypertension. Methods: This randomized, placebo-controlled trial included 60 participants with hypertension aged 50-70 years who were randomly divided into Air group (inhaled placebo air) or H2-O2 group [inhaled H2-O2 mixture (66% H2/33% O2)]. Participants in both groups were treated 4 h per day for 2 weeks. Four-limb blood pressure and 24-h ambulatory blood pressure were monitored before and after the intervention, and levels of plasma hormones related to hypertension were determined. Results: A total of 56 patients completed the study (27 in the Air group and 29 in the H2-O2 group). The right and left arm systolic blood pressure (SBP) were significantly decreased in H2-O2 group compared with the baseline levels (151.9 ± 12.7 mmHg to 147.1 ± 12.0 mmHg, and 150.7 ± 13.3 mmHg to 145.7 ± 13.0 mmHg, respectively; all p < 0.05). Meanwhile, the H2-O2 intervention significantly decreased diastolic nighttime ambulatory blood pressure by 2.7 ± 6.5 mmHg (p < 0.05). All blood pressures were unaffected in placebo group (all p > 0.05). When stratified by age (aged 50-59 years versus aged 60-70 years), participants in the older H2-O2 group showed a larger reduction in right arm SBP compared with that in the younger group (p < 0.05). In addition, the angiotensin II, aldosterone, and cortisol levels as well as the aldosterone-to-renin ratio in plasma were significantly lower in H2-O2 group compared with baseline (p < 0.05). No significant differences were observed in the Air group before and after the intervention. Conclusion: Inhalation of a low-dose H2-O2 mixture exerts a favorable effect on blood pressure, and reduces the plasma levels of hormones associated with hypertension on renin-angiotensin-aldosterone system and stress in midlife/older adults with hypertension.

5.
Front Nutr ; 9: 971581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172518

RESUMO

Obesity is characterized by lipid accumulation in distinct organs. Presently, fenofibrate is a commonly used triglyceride-lowering drug. This study is designed to investigate whether long-term fenofibrate intervention can attenuate lipid accumulation in ob/ob mouse, a typical model of obesity. Our data demonstrated that fenofibrate intervention significantly decreased plasma triglyceride level by 21.0%, increased liver index and hepatic triglyceride content by 31.7 and 52.1%, respectively, and elevated adipose index by 44.6% compared to the vehicle group. As a PPARα agonist, fenofibrate intervention significantly increased the expression of PPARα protein in the liver by 46.3% and enhanced the expression of LDLR protein by 3.7-fold. However, fenofibrate dramatically increased the expression of PPARγ and SREBP-1c proteins by ~2.1- and 0.9-fold in the liver, respectively. Fenofibrate showed no effects on the expression of genes-related to fatty acid ß-oxidation. Of note, it significantly increased the gene expression of FAS and SCD-1. Furthermore, fenofibrate modulated the gut microbiota. Collectively, long-term fenofibrate induces lipid accumulation in liver and adipose tissues in ob/ob mice by enhancing the expression of adipogenesis-related proteins and gut microbiota. These data suggest that fenofibrate may have limited effects on attenuating lipid deposition in obese patients.

6.
J Inflamm Res ; 14: 5541-5550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737603

RESUMO

BACKGROUND: Molecular hydrogen (H2) has been recognized as an effective antioxidant with no or little side effects. While it is known that oxidative stress is closely associated with aging, the beneficial effect of H2 on oxidative stress-related aging is still unclear. In this study, a mouse model of D-galactose-induced aging was employed to investigate the protective effects of H2. METHODS: The mice were administrated of H2 via different routes (4% H2 inhalation, H2-rich water drinking, and H2-rich saline injection), the aging-related biomarkers in plasma and the oxidative stress in different tissues were measured. RESULTS: The results showed that H2 improved aging-related biomarkers, ie, total antioxidant capacity, advanced glycation end products, tumor necrosis factor-α, free fatty acids, and alanine aminotransferase in plasma. Furthermore, H2 alleviated oxidative stress in the liver, brain, and heart by reducing the levels of lipid peroxidation and malondialdehyde and increasing the activity of superoxide dismutase. In addition, it seems that 4% H2 inhalation was the most effective regarding the amount of H2 taken up and in reducing the markers of oxidative stress in some of the tissues; however, the other routes of administration resulted in the same efficacy in most indicators. CONCLUSION: H2 can prevent oxidative stress in D-galactose-induced aging mice when administered by different routes.

7.
Exp Biol Med (Maywood) ; 246(18): 1981-1989, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33899541

RESUMO

Oxidative stress and inflammation are closely related to atherosclerotic cardiovascular disease. It is established that hydrogen has significant protective effects on many diseases as a potential antioxidative and anti-inflammatory agent. The purpose of this study is to evaluate the effect of hydrogen on unstable angina in vitro and in vivo. An atherosclerosis model in vitro was constructed by ox-LDL-induced injury of human umbilical vein endothelial cells and in vitro testing indicated hydrogen inhibited ox-LDL-induced oxidative stress and inflammatory response by down-regulating LOX-1/NF-kB signaling pathway. Subsequently, the attenuating effect of hydrogen-rich water intake on unstable angina was further confirmed in clinic. Forty hospitalized subjects with unstable angina were enrolled and consumed either 1000-1200 mL/d hydrogen-rich water or the same amount of placebo pure water in addition to conventional drugs for three months. Clinical analysis showed hydrogen-rich water intake relieved angina symptoms in unstable angina patients. Serum analysis showed that hydrogen-rich water addition resulted in more effective reductions of total-cholesterol, low-density lipoprotein-cholesterol, and apolipoprotein B levels compared with conventional treatment. These results support that hydrogen as adjuvant treatment has a beneficial effect on unstable angina.


Assuntos
Angina Instável/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Hidrogênio/farmacologia , Lipoproteínas LDL/efeitos dos fármacos , Angina Instável/metabolismo , Antioxidantes/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hidrogênio/metabolismo , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA