Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(19): 7780-7786, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695093

RESUMO

Development of highly efficient, heavy-metal-free electrochemiluminescence (ECL) materials is attractive but still challenging. Herein, we report an aggregation-induced delayed ECL (AIDECL) active organic dot (OD) composed of a tert-butoxy-group-substituted benzophenone-dimethylacridine compound, which shows high ECL efficiency. The resultant ODs exhibit 2.1-fold higher ECL efficiency compared to control AIDECL-active ODs. Molecular stacking combined with theoretical calculations suggests that tert-butoxy groups effectively participate in the intermolecular interactions, further inhibiting the molecular motions in the aggregated states and thus accelerating radiative decay. On the basis of these ODs exhibiting excellent ECL performance, a proof-of-concept biosensor is constructed for the detection of miR-16 associated with Alzheimer's disease, which demonstrates excellent detection ability with the limit of detection of 1.7 fM. This work provides a new approach to improve the ECL efficiency and enriches the fundamental understanding of the structure-property relationship.

2.
Anal Chem ; 96(18): 7172-7178, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38650072

RESUMO

Achieving sensitive detection and accurate identification of cancer cells is vital for diagnosing and treating the disease. Here, we developed a logic signal amplification system using DNA tetrahedron-mediated three-dimensional (3D) DNA nanonetworks for sensitive electrochemiluminescence (ECL) detection and subtype identification of cancer cells. Specially designed hairpins were integrated into DNA tetrahedral nanostructures (DTNs) to perform a catalytic hairpin assembly (CHA) reaction in the presence of target microRNA, forming hyperbranched 3D nanonetworks. Benefiting from the "spatial confinement effect," the DNA tetrahedron-mediated catalytic hairpin assembly (DTCHA) reaction displayed significantly faster kinetics and greater cycle conversion efficiency than traditional CHA. The resulting 3D nanonetworks could load a large amount of Ru(phen)32+, significantly enhancing its ECL signal, and exhibit detection limits for both miR-21 and miR-141 at the femtomolar level. The biosensor based on modular logic gates facilitated the distinction and quantification of cancer cells and normal cells based on miR-21 levels, combined with miR-141 levels, to further identify different subtypes of breast cancer cells. Overall, this study provides potential applications in miRNA-related clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Humanos , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , DNA/química , Nanoestruturas/química , Limite de Detecção , Linhagem Celular Tumoral , Neoplasias da Mama/diagnóstico , Células MCF-7
3.
Adv Healthc Mater ; 13(5): e2302652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794560

RESUMO

Small frame nucleic acids (FNAs) serve as excellent carrier materials for various functional nucleic acid molecules, showcasing extensive potential applications in biomedicine development. The carrier module and function module combination is crucial for probe design, where an improper combination can significantly impede the functionality of sensing platforms. This study explores the effect of various combinations on the sensing performance of nanodevices through simulations and experimental approaches. Variances in response velocities, sensitivities, and cell uptake efficiencies across different structures are observed. Factors such as the number of functional molecules loaded, loading positions, and intermodular distances affect the rigidity and stability of the nanostructure. The findings reveal that the structures with full loads and moderate distances between modules have the lowest potential energy. Based on these insights, a multisignal detection platform that offers optimal sensitivity and response speed is developed. This research offers valuable insights for designing FNAs-based probes and presents a streamlined method for the conceptualization and optimization of DNA nanodevices.


Assuntos
MicroRNAs , Nanoestruturas , Ácidos Nucleicos , MicroRNAs/genética , DNA/química , Nanoestruturas/química , Simulação por Computador , Nanotecnologia/métodos
4.
Chem Sci ; 14(28): 7699-7708, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37484658

RESUMO

DNA molecular machines based on DNA logic circuits show unparalleled potential in precision medicine. However, delivering DNA nanomachines into real biological systems and ensuring that they perform functions specifically, quickly and logically remain a challenge. Here, we developed an efficient DNA molecular machine integrating transfer-sensor-computation-output functions to achieve high fidelity detection of intracellular biomolecules. The introduction of pH nanoswitches enabled the nanomachines to be activated after entering the cell, and the spatial-confinement effect of the DNA triangular prism (TP) enables the molecular machine to process complex information at the nanoscale, with higher sensitivity and shorter response time than diffuse-dominated logic circuits. Such cascaded activation molecular machines follow the logic of AND to achieve specific capture and detection of biomolecules in living cells through a multi-hierarchical response, providing a new insight into the construction of efficient DNA molecular machines.

5.
Anal Chim Acta ; 1251: 340980, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925305

RESUMO

Developing a simple, economical, and accurate diagnostic method has positive practical significance for the early prevention and intervention of Alzheimer's disease (AD). Herein, combining a closed bipolar electrode (BPE) chip with multicolor electrochemiluminescence (ECL) imaging technology, we constructed a low-voltage driven portable visualized ECL device for the early screening of AD. By introducing parallel resistance, the total resistance of the circuit was greatly reduced. A classical mixture of Ir(ppy)3 and Ru(bpy)32+ was used as multicolor emitters of the anode with TPrA as the co-reactant. Capture of amyloid-ß (Aß) through antigen-antibody recognition, and signal amplification by electroactive covalent organic frameworks (COF) probe at the cathode of BPE caused the significantly increased faradaic current. The electrical balance of the BPE system resulted in the change of the emission color from green to red at the anode. The ECL-BPE sensor shows good reproducibility and high sensitivity with detection limit of 1 pM by naked eye. The driving voltage is 3.0 V, which means the chip could be driven by two fifth batteries. The visualized ECL-BPE sensor provides a promising point-of-care testing (POCT) tool for the screening of Alzheimer's-related diseases in the early stage.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Humanos , Doença de Alzheimer/diagnóstico , Medições Luminescentes/métodos , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Biomarcadores , Eletrodos , Técnicas Eletroquímicas/métodos
6.
J Mater Chem B ; 11(7): 1523-1532, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36688312

RESUMO

Exploring the ultrahigh quantum efficiency of a carbon-based probe via a green and simple technique, and utilisation of its sensing ability for highly bioactive molecule detection is still highly challenging. Herein, we prepared a novel boron-enriched rice-like homologous carbon nanoclusters (BRCNs) with an ultrahigh quantum efficiency of ∼51.5% by introduction of a conjugated structure attached to the CN bond and an electron-withdrawing boron active centre. Unexpectedly, the BRCNs obtained showed a stable dispersion of rice-like carbon nanograins, composed of small carbon dot assembled nanoclusters with an average diameter size of ∼30 nm, and containing boron units of ∼24.68 at%. What's exciting is that the BRCNs obtained exhibited an "on-off-on" three-state emission with the addition of an hydroxyl radical (OH˙) and its antioxidants. Thus, two distinctive fluorescent responses for OH˙ and antioxidants based on the BRCN probe had been developed, and the mechanism has been determined using TEM, XPS, FT-IR, FL, UV-vis spectrophotometry, UPS and fluorescent lifetimes. The OH˙, generated from the Fenton's reagent, preferentially attack the electron-deficient vacancy p orbit of the boron atom in the surface of the BRCNs, which results in the boron atom being easily substituted/attacked by OH˙, and leading to spontaneous aggregation induced quenching (AIQ) due to the existence of a strong intermolecular hydrogen bond between denatured BRCNs. Furthermore, the proposed method was also successfully applied to monitor endogenous OH˙ generation in HeLa cells by confocal imaging, which could be used for elucidating OH˙-induced oxidative damage to biological tissues and proteins.


Assuntos
Radical Hidroxila , Oryza , Humanos , Células HeLa , Radical Hidroxila/metabolismo , Boro/química , Oryza/metabolismo , Carbono/química , Antioxidantes , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Chem Commun (Camb) ; 58(59): 8210-8213, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35789233

RESUMO

By assembling nanotweezers with ATP-splitting aptamers on gold nanorods (AuT123L), we constructed a near-infrared-activated ATP sensing device that could time-controllably image ATP levels in living cells. By replacing the aptamers on the nanotweezers, the nanoplatform can be applied to other important biomolecules, opening up more possibilities for the study of time controllable nanodevices.


Assuntos
Nanotubos , Trifosfato de Adenosina , DNA , Ouro , Oligonucleotídeos
8.
Anal Chem ; 93(44): 14892-14899, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34709789

RESUMO

Lysosomal acidification is essential for its degradative function, and the flux of H+ correlated with that of K+ in lysosomes. However, there is little research on their correlation due to the lack of probes that can simultaneously image these two ions. To deeply understand the role of K+ in lysosomal acidification, here, we designed and fabricated a nanodevice using a K+-aptamer and two pH-triggered nanoswitches incorporated into a DNA triangular prism (DTP) as a dual signal response platform to simultaneously visualize K+ and pH in lysosomes by a fluorescence method. This strategy could conveniently integrate two signal recognition modules into one probe, so as to achieve the goal of sensitive detection of two kinds of signals in the same time and space, which is suitable for the detection of various signals with the correlation of concentration. By co-imaging both K+ and H+ in lysosomes, we found that the efflux of K+ was accompanied by a decrease of pH, which is of great value in understanding lysosomal acidification. Moreover, this strategy also has broad prospects as a versatile optical sensing platform for multiplexed analysis of other biomolecules in living cells.


Assuntos
Corantes Fluorescentes , Lisossomos , DNA , Células HeLa , Humanos , Concentração de Íons de Hidrogênio
9.
Anal Chem ; 93(17): 6857-6864, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33890762

RESUMO

Aggregation-induced emission (AIE) active Pdots are attractive nanomaterials applied in electrochemiluminescence (ECL) fields, while the irreversible redox reaction of these Pdots is a prevailing problem, resulting in instability of ECL emission. Herein, we first designed and synthesized an AIE-active Pdot with reversible redox property, which contains a tetraphenylethene derivate and benzothiadiazole (BT) to achieve stable ECL emission. BT has a good rigid structure with excellent electrochemical behaviors, which is beneficial for avoiding the destruction of the conjugated structure as much as possible during the preparation of Pdots, thus maintaining good redox property. The tetraphenylethene derivate, as a typical AIE-active moiety, provides a channel for highly efficient luminescence in the aggregated states. The Pdots exhibited reversible and quasi-reversible electrochemical behaviors during cathodic and anodic scanning, respectively. The stable annihilation, reductive-oxidative, and oxidative-reductive ECL signals were observed. Subsequently, we constructed an ultrasensitive ECL biosensor based on the oxidative-reductive ECL mode for the detection of miRNA-21 with a detection limit of 32 aM. This work provides some inspiration for the future design of ECL materials featuring AIE-active property and stable ECL emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA