Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(22): 25484-25493, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32406672

RESUMO

Sustainability, eco-efficiency, and green chemistry guide the development of new materials in various fields. Herein, we designed and fabricated bio-based superhydrophobic coatings by means of a facile spraying synthesized method. The as-prepared superhydrophobic coatings exhibited high water repellency with higher water contact angle being up to 156.9 ± 2.7° and a lower sliding angle of only 4.3 ± 0.6°. Also, the water adhesion on the superhydrophobic coatings was as low as 11 µN, which was far less than that (346 µN) of the normal polyurethane surfaces. The superhydrophobic properties still retained high stability under the conditions of soaking in acid solution (pH = 1) and alkaline solution (pH = 13). Meanwhile, the as-prepared bio-based superhydrophobic coatings were verified for effective corrosion and pollution protection ability. The electrochemical measurements showed excellent corrosion resistance with a higher corrosion voltage of -204.7 mV and lower corrosion current of 1.494 × 10-5 A/cm2. The corrosion protection efficiency reached a value of 95.2%, and meantime, the superhydrophobic coatings displayed higher antipollution performance without any stains when they were removed from the polluted liquids. On this basis, the underlying physical-chemical mechanisms clearly revealed that the surface micro-nanostructures could capture the continuous and stable air layer to segregate the corrosion and pollution media.

2.
Langmuir ; 36(4): 880-888, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31939676

RESUMO

The surface with the gradient non-wettability intensely appeals to researchers because of its academic significance and applications for directional droplet movement. Herein, we developed a homogeneous structure superhydrophobic surface with the gradient non-wettability by a combination strategy of chemical etching and vapor diffusion modification. As a consequence, the as-prepared surface exhibits a remarkable gradient characteristic of water repellency, and the water contact angle is mainly located within the range of 162 ± 0.5 to 149 ± 0.4°. Meanwhile, the sliding angle also exhibits a corresponding change from 3 to 11°. On this basis, the gradient characteristic of non-wettability induces the distinguishing droplet adhesion on the surface, that is, from 19 µN for the most hydrophobic end to 57 µN for the opposite one. Because of the difference of the water adhesion force, droplets on the as-prepared surface can well roll alongside a specific direction (i.e., gradient direction of non-wettability). In terms of dynamic impact droplets, they can rapidly rebound off the sample surface with the short contact time of 12.8 ms, and the finally fallen droplets mainly deviate toward weaker regions because of water repellency. To analyze this phenomenon, it is found that the asymmetric mechanic behavior is mainly caused by the unbalanced retraction force between the both ends of the impact droplet. This work provides a novel strategy to construct the homogeneous structure superhydrophobic surface with the gradient non-wettability for the applications in the droplet movement control or transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA