Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 225: 116335, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824968

RESUMO

Drugs specifically targeting YKL-40, an over-expressed gene (CHI3L1) in various diseases remain developed. The current study is to create a humanized anti-YKL-40 neutralizing antibody and characterize its potentially therapeutic signature. We utilized in silico CDR-grafting bioinformatics to replace the complementarity determining regions (CDRs) of human IgG1 with mouse CDRs of our previously established anti-YKL-40 antibody (mAY). In fifteen candidates (VL1-3/VH1-5) of heavy and light chain variable region combination, one antibody L3H4 named Rosazumab demonstrated strong binding affinity with YKL-40 (KD = 4.645 × 10-8 M) and high homology with human IgG (80 %). In addition, we established different overlapping amino acid peptides of YKL-40 and found that Rosazumab specifically bound to residues K337, K342, and R344, the KR-rich functional domain of YKL-40. Rosazumab inhibited migration and tube formation of YKL-40-expressing tumor cells and induced tumor cell apoptosis. Mechanistically, Rosazumab induced interaction of N-cadherin with ß-catenin and activation of downstream MST1/RASSF1/Histone H2B axis, leading to chromosomal DNA breakage and cell apoptosis. Treatment of xenografted tumor mice with Rosazumab twice a week for 4 weeks inhibited tumor growth and angiogenesis, but induced tumor apoptosis. Rosazumab injected in mice distributed to blood, tumor, and other multiple organs, but did not impact in function or structure of liver and kidney, indicating non-detectable toxicity in vivo. Collectively, the study is the first one to demonstrate that a humanized YKL-40 neutralizing antibody offers a valuable means to block tumor development.

2.
Int J Med Sci ; 21(5): 862-873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617005

RESUMO

Background: Direct liver invasion (DI) is a predominant pathway of gallbladder cancer (GBC) metastasis, but the molecular alterations associated with DI remain addressed. This study identified specific genes correlated with DI, which may offer a potential biomarker for the diagnosis and prognosis of advanced GBC. Methods: RNA samples from 3 patients with DI of GBC were used for RNA-seq analysis. Differentially expressed genes and metabolic pathways between primary tumor (T) and DI tissue was used to analyze aberrant gene expressions. Immunohistochemistry (IHC) of fatty acid binding protein 1 (FABP1) in 62 patients with DI was engaged to evaluate its association with clinicopathological characteristics and prognosis. IHC of CD3+ and CD8+ T cells was analyzed for their correlation with FABP1 expression, clinicopathological features and prognosis. Univariate and multivariate Cox hazards regression analyses were performed to identify independent prognostic factors for disease-free survival (DFS) and overall survival (OS). Results: FABP1 mRNA levels were significantly upregulated in DI region compared to T tissue. IHC results showed identical results with elevated FABP1 (p < 0.0001). Expression of FABP1 in DI region was significantly associated with lymph node metastasis (P = 0.028), reduced DFS (P = 0.013) and OS (P = 0.022); in contrast, its expression in T region was not associated with clinicopathological characteristics and prognosis (P > 0.05). The density of CD8+ T cells in DI region with higher FABP1 expression was significantly lower than that with lower FABP1 expression (p = 0.0084). Multivariate analysis unveiled those hepatic metastatic nodules (HR = 3.35, 95%CI: 1.37-8.15, P = 0.008) and FABP1 expression in DI region (HR = 2.01, 95%CI: 1.05-3.88, P = 0.036) were high risk factors for OS, and FABP1(HR = 2.05, 95%CI: 1.04-4.06, P = 0.039) was also a high risk factor for DFS. Conclusions: Elevated expression of FABP1 in DI region serves as a potential prognostic biomarker for advanced GBC with DI.


Assuntos
Carcinoma in Situ , Carcinoma , Neoplasias da Vesícula Biliar , Humanos , Linfócitos T CD8-Positivos , Proteínas de Ligação a Ácido Graxo/genética , Neoplasias da Vesícula Biliar/genética , Fígado , Prognóstico
3.
Environ Pollut ; 347: 123674, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458517

RESUMO

Fine particulate matter (PM2.5) has been linked to increased severity and incidence of airway diseases, especially chronic obstructive pulmonary disease (COPD) and asthma. Airway remodeling is an important event in both COPD and asthma, and airway smooth muscle cells (ASMCs) are key cells which directly involved in airway remodeling. However, it was unclear how PM2.5 affected ASMCs. This study investigates the effects of PM2.5 on airway smooth muscle and its mechanism. We first showed that inhaled particulate matter was distributed in the airway smooth muscle bundle, combined with increased airway smooth muscle bundle and collagen deposition in vivo. Then, we demonstrated that PM2.5 induced up-regulation of collagen-I and alpha-smooth muscle actin (α-SMA) expression in rat and human ASMCs in vitro. Next, we found PM2.5 led to rat and human ASMCs senescence and exhibited senescence-associated secretory phenotype (SASP) by autophagy-induced GATA4/TRAF6/NF-κB signaling, which contributed to collagen-I and α-SMA synthesis as well as airway smooth muscle remodeling. Together, our results provided evidence that SASP induced by PM2.5 in airway smooth muscle cells prompted airway remodeling.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Ratos , Animais , Remodelação das Vias Aéreas , Fenótipo Secretor Associado à Senescência , Miócitos de Músculo Liso , Asma/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Colágeno Tipo I , Proliferação de Células , Material Particulado/metabolismo , Células Cultivadas
4.
JAMA Intern Med ; 183(11): 1263-1264, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747722

RESUMO

This case report describes an older patient with persistent chest pain, recent hospitalization for SARS-CoV-2 infection, and previous kidney transplantation.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Dor no Peito/diagnóstico , Dor no Peito/etiologia , Teste para COVID-19
5.
J Epidemiol Community Health ; 77(12): 782-790, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37604674

RESUMO

BACKGROUND: Early identification of modifiable risk factors is essential for the prevention of frailty. This study aimed to explore the causal relationships between a spectrum of genetically predicted risk factors and frailty. METHODS: Univariable and multivariable Mendelian randomisation (MR) analyses were performed to explore the relationships between 22 potential risk factors and frailty, using summary genome-wide association statistics. Frailty was accessed by the frailty index. RESULTS: Genetic liability to coronary artery disease (CAD), type 2 diabetes mellitus (T2DM), ischaemic stroke, atrial fibrillation and regular smoking history, as well as genetically predicted 1-SD increase in body mass index, systolic blood pressure, diastolic blood pressure, low-density lipoprotein cholesterol, triglycerides, alcohol intake frequency and sleeplessness were significantly associated with increased risk of frailty (all p<0.001). In addition, there was a significant inverse association between genetically predicted college or university degree with risk of frailty (beta -0.474; 95% CI (-0.561 to -0.388); p<0.001), and a suggestive inverse association between high-density lipoprotein cholesterol level with risk of frailty (beta -0.032; 95% CI (-0.055 to -0.010); p=0.004). However, no significant causal associations were observed between coffee consumption, tea consumption, serum level of total testosterone, oestradiol, 25-hydroxyvitamin D, C reactive protein or moderate to vigorous physical activity level with frailty (all p>0.05). Results of the reverse directional MR suggested bidirectional causal associations between T2DM and CAD with frailty. CONCLUSIONS: This study provided genetic evidence for the causal associations between several modifiable risk factors with lifetime frailty risk. A multidimensional approach targeting these factors may hold a promising prospect for prevention frailty.


Assuntos
Isquemia Encefálica , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Fragilidade , Acidente Vascular Cerebral , Humanos , Diabetes Mellitus Tipo 2/genética , Fumar/efeitos adversos , Estudo de Associação Genômica Ampla , Fragilidade/epidemiologia , Fragilidade/genética , Fatores de Risco , Análise da Randomização Mendeliana , Colesterol
6.
Cancer Lett ; 563: 216184, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088328

RESUMO

Despite of the high lethality of gallbladder cancer (GBC), little is known regarding molecular regulation of the tumor immunosuppressive microenvironment. Here, we determined tumor expression levels of YKL-40 and the molecular mechanisms by which YKL-40 regulates escape of anti-tumor immune surveillance. We found that elevated expression levels of YKL-40 in plasma and tissue were correlated with tumor size, stage IV and lymph node metastasis. Single cell transcriptome analysis revealed that YKL-40 was predominantly derived from M2-like subtype of infiltrating macrophages. Blockade of M2-like macrophage differentiation of THP-1 cells with YKL-40 shRNA resulted in reprogramming to M1-like macrophages and restricting tumor development. YKL-40 induced tumor cell expression and secretion of growth differentiation factor 15 (GDF15), thus coordinating to promote PD-L1 expression mediated by PI3K, AKT and/or Erk activation. Interestingly, extracellular GDF15 inhibited intracellular expression of GDF15 that suppressed PD-L1 expression. Thus, YKL-40 disrupted the balance of pro- and anti-PD-L1 regulation to enhance expression of PD-L1 and inhibition of T cell cytotoxicity, leading to tumor immune evasion. The data suggest that YKL-40 and GDF15 could serve as diagnostic biomarkers and immunotherapeutic targets for GBC.


Assuntos
Neoplasias da Vesícula Biliar , Humanos , Antígeno B7-H1 , Linhagem Celular Tumoral , Proteína 1 Semelhante à Quitinase-3/metabolismo , Neoplasias da Vesícula Biliar/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Macrófagos/metabolismo , Evasão Tumoral , Microambiente Tumoral
7.
JAMA Intern Med ; 183(1): 78-79, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36441544

RESUMO

This case report describes a patient in their 60s who presented to the emergency department with acute, severe precordial chest pain radiating to their left arm at night, accompanied by dyspnea, dizziness, and sweating.


Assuntos
Dor no Peito , Eletrocardiografia , Humanos , Idoso , Dor no Peito/diagnóstico , Dor no Peito/etiologia , Arritmias Cardíacas
8.
Front Oncol ; 12: 994087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387215

RESUMO

Background: Although a plethora of studies have employed multiple gallbladder cancer (GBC) cell lines, it is surprisingly noted that there is still lack of a normal gallbladder epithelial cell line as a normal counterpart, thus impeding substantially the progress of mechanistic studies on the transformation of normal epithelial cells to cancer. Here, we created a normal gallbladder epithelial cell line named L-2F7 from human gallbladder tissue. Methods: Gallbladder tissues from a diagnosed cholecystitis female patient were collected, and epithelial cells were enriched by magnetic cell sorting. Then, the cells were immortalized by co-introduction of human telomerase reverse transcriptase (hTERT) and Simian virus 40 large T antigen (LT-SV40) via a lentivirus infection system. After clonal selection and isolation, L-2F7 cells were tested for epithelial markers CK7, CK19, CK20, and CD326, genomic feature, cell proliferation, and migration using Western blot, immunofluorescence, whole genome sequencing, karyotyping, and RNA sequencing. L-2F7 cells were also transplanted to Nude (nu/nu) mice to determine tumorigenicity. Results: We successfully identified one single-cell clone named L-2F7 which highly expressed epithelial markers CD326, CK7, CK19, and CK20. This cell line proliferated with a doubling time of 23 h and the epithelial morphology sustained over 30 passages following immortalization. Transient gene transduction of L-2F7 cells led to expression of exogenous GFP and FLAG protein. L-2F7 cells exhibited both distinct non-synonymous mutations from those of gallbladder cancer tissues and differential non-cancerous gene expression patterns similar to normal tissue. Although they displayed unexpected mobility, L-2F7 cells still lacked the ability to develop tumors. Conclusion: We developed a non-cancerous gallbladder epithelial cell line, offering a valuable system for the study of gallbladder cancer and other gallbladder-related disorders.

9.
Front Pharmacol ; 13: 850735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273513

RESUMO

Aims: Irradiation is an effective treatment for tumors but has been associated with cardiac dysfunction. However, the precise mechanisms remain incompletely elucidated. This study investigated the long-term cardiac damage associated with abdominal irradiation and explored possible mechanisms. Methods and Results: Wild-type C57BL6/J mice were divided into two groups: untreated controls (Con) and treatment group receiving 15 Gy of abdominal gamma irradiation (AIR). Both groups received normal feeding for 12 months. The AIR group showed reductions in left ventricular ejection fraction (LVEF), fractional shortening (FS), left ventricular end-diastolic internal diameter (LVID; d), left ventricular end-diastolic volume (LV Vol. diastolic volume (LV Vol; d) and mitral transtricuspid flow late diastolic filling velocity (MV A). It also showed increased fibrosis, reduced conduction velocity and increased conduction heterogeneity. Non-targeted metabolomics showed the differential metabolites were mainly from amino acid metabolism. Further KEGG pathway annotation and enrichment analysis revealed that abnormalities in arginine and proline metabolism, lysine degradation, d-arginine and d-ornithine metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Conclusion: Abdominal irradiation causes long-term damage to the non-irradiated heart, as reflected by electrical and structural remodeling and mechanical dysfunction associated with abnormal amino acid biosynthesis and metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA