Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; : 141752, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508465

RESUMO

Microbial fuel cell (MFC) has attracted much attention in treating organic wastewater due to its double functions of degrading organics and generating electricity with microorganisms as biocatalysts. Unfortunately, some organics with biological toxicity such as acridine could inhibit the growth and activity of the microorganisms on the anode so that the double functions of MFC would recede. Enhancing microbial activity by using new biocompatible materials as anodes is prospective to solve problem. A novel anode was achieved by electrodepositing g-C3N4 sheets to the carbon felt (CF) modified with polyaniline-dopamine composite film, and used to treat wastewater containing acridine for the first time. After the operation of 13 d, MFC loading with the composite anode showed a degradation efficiency of 98.3% in 150 mg L-1 acridine, while that of CF-MFC was 55.8%. Moreover, MFC loading the modified anode obtained a maximum power density of 1976 ±â€¯47 mW m-2, 140.1% higher than that of CF-MFC. Further analysis revealed that the functional microorganisms associated with acridine degradation such as Achromobacter and Alcaligenes were enriched on the g-C3N4/PANI-DA/CF anode. Moreover, the composite anode could improve the activity of microorganisms and elicit them to generate conductive nanowires, which was beneficial to transferring electrons from microbes to anode over long distances, suggesting a promising prospect application in MFC.

2.
J Hazard Mater ; 388: 122123, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31972431

RESUMO

Indole is a high-toxic refractory nitrogen-containing compound that could cause serious harm to the human and ecosystem. It has been a challenge to develop economical and efficient technology for degrading indole. Microbial fuel cell (MFC) has great potential in the removal of organic pollutants utilizing microorganisms as catalysts to degrade organic matter into the nutrients. Herein, a novel anode of Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt (Fe2O3-PDHC/CF) was prepared by electrochemical deposition. The degradation efficiency of indole by the MFC loading Fe2O3-PDHC/CF anode was up to 90.3 % in 120 h operation, while that of the MFC loading CF anode was only 44.0 %. The maximum power density of the MFC loading Fe2O3-PDHC/CF anode was 3184.4 mW·m-2, increasing 113 % compared to the MFC loading CF anode. The superior performances of the MFC with Fe2O3-PDHC surface-modified anode owned to the synergistic effect of high conductive Fe2O3 and admirably biocompatible polyaniline-dopamine. MFC with the Fe2O3-PDHC/CF anode could produce considerable electricity and effectively degrade indole in water, which demonstrated a practical approach for the efficient degradation of refractory organic compounds in wastewater.


Assuntos
Fontes de Energia Bioelétrica , Indóis/metabolismo , Poluentes Químicos da Água/metabolismo , Compostos de Anilina , Carbono , Dopamina , Eletricidade , Técnicas Eletroquímicas , Eletrodos , Compostos Férricos , Purificação da Água
3.
J Biosci Bioeng ; 115(2): 147-53, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23040995

RESUMO

Enterotoxigenic Escherichia coli (ETEC) remains a major cause of diarrheic disease in developing areas, for which there is no effective vaccine available. In this study, we genetically engineered a recombinant heat-stable enterotoxin (STa) coupled to the subunit B of heat-labile enterotoxin (LTB). This fusion protein, STa-LTB, possesses a single amino acid substitution at position 14 of STa. Our data demonstrates that the enterotoxicity of STa in STa-LTB was dramatically reduced. A gelatin nanovaccine candidate was prepared using the purified STa-LTB fusion protein characterized with an entrapment efficiency of 84.88 ± 6.37% and smooth spheres size ranges of 80-200 nm. Antigen-specific antibody responses against STa-LTB and STa in the sera and the intestinal mucus respectively were used to test the immunogenicity of the nanovaccine. This vaccine was further screened in mice by its ability to elicit neutralizing antibodies against STa and protect animals from the challenge with ETEC in mice. The STa-LTB nanoparticles delivered demonstrated a capacity to induce significantly higher and long-lasting antibody responses and increased immune protection against ETEC challenge relative to the control STa-LTB vaccine absorbed in conventional aluminum hydrate salt (p < 0.01). These results warrant the further studies of the development of a novel nanoparticulate vaccine as a broad-spectrum vaccine against ETEC infection.


Assuntos
Toxinas Bacterianas/imunologia , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Escherichia coli Enterotoxigênica/imunologia , Enterotoxinas/imunologia , Infecções por Escherichia coli/prevenção & controle , Proteínas de Escherichia coli/imunologia , Nanopartículas/química , Animais , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Toxinas Bacterianas/química , Toxinas Bacterianas/isolamento & purificação , Escherichia coli Enterotoxigênica/química , Enterotoxinas/química , Enterotoxinas/isolamento & purificação , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Feminino , Gelatina/química , Temperatura Alta , Masculino , Camundongos , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA