RESUMO
I-III-VI ternary quantum dots (QDs) have emerged as favorable alternatives to the toxic II-VI QDs for optoelectronic and biological applications. However, their use as optical gain media for microlasers is still limited by a low fluorescence efficiency. Here, we demonstrate amplified spontaneous emission (ASE) and lasing from colloidal QDs of Zn-processed AgIn5S8 (AIS) for the first time. The passivation treatment on the AIS QDs yields a 3.4-fold enhancement of fluorescence quantum efficiency and a 30% increase in the two-photon absorption cross section. ASE is achieved from the AIS/ZnS core/shell QD films under both one- and two-photon pumping with a threshold fluence of â¼84.5 µJ/cm2 and 3.1 mJ/cm2, respectively. These thresholds are comparable to the best optical gain performance of Cd based-QDs reported in the literature. Moreover, we demonstrate a facile whispering-gallery-mode microlaser of the core/shell QDs with a lasing threshold of â¼233 µJ/cm2. The passivated AIS QDs can be promising optical gain media for photonic applications.
RESUMO
The AgInS2 colloidal quantum dot (CQD) is a promising photoanode material with a relatively wide band gap for photoelectrochemical (PEC) solar-driven hydrogen (H2) evolution. However, the unsuitable energy band structure still forms undesired energy barriers and leads to serious charge carrier recombination with low solar to hydrogen conversion efficiency. Here, we propose to use the ZnS shell for defect passivation and Cu ion doping for band structure engineering to design and synthesize a series of Cu x Ag1-x InS2/ZnS CQDs. ZnS shell-assisted defect passivation suppresses charge carrier recombination because of the formation of the core/shell heterojunction interface, enhancing the performance of PEC devices with better charge separation and stability. More importantly, the tunable Cu doping concentration in AgInS2 CQDs leads to the shift of the quantum dot band alignment, which greatly promotes the interfacial charge separation and transfer. As a result, Cu x Ag1-x InS2/ZnS CQD photoanodes for PEC cells exhibit an enhanced photocurrent of 5.8 mA cm-2 at 0.8 V versus the RHE, showing excellent photoelectrocatalytic activity for H2 production with greater chemical-/photostability.