Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 141: 109004, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37598734

RESUMO

Interleukin 8 (IL8) is vital in promoting inflammation and is a crucial mediator in various physiopathological processes while influencing immunological function. The effect of IL8 on the immunological response to acute bacterial infections in Nile tilapia (Oreochromis niloticus) remains unknown. This work found an IL8 gene from Nile tilapia (On-IL8). It includes a 285 bp open reading frame and codes for 94 amino acids. The transcript levels of On-IL8 were highest in the head-kidney tissue and sharply induced by Streptococcus agalactiae and Aeromonas hydrophila. Besides, in vitro experiments revealed that On-IL8 regulated a variety of immunological processes and promoted inflammatory responses. Moreover, On-IL8 suppressed the NF-κB signaling pathway, consistent with in vitro results. These significant findings serve as the basis for further investigation into how IL8 confers protection to bony fish in opposition to bacterial infections.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Interleucina-8/genética , Infecções Estreptocócicas/veterinária , Regulação da Expressão Gênica , Sequência de Aminoácidos , Proteínas de Peixes/química , Streptococcus agalactiae/fisiologia
2.
Fish Shellfish Immunol ; 139: 108925, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37414306

RESUMO

Apolipoprotein A-I (ApoA-I) is a lipoprotein involved in a variety of physiological and pathological processes. However, the immunomodulatory functions of ApoA-I in fish are not well understood. In this study, ApoA-I from Nile tilapia (Oreochromis niloticus) (On-ApoA-I) was identified, and its function in bacterial infection was investigated. The open reading frame of On-ApoA-I is 792 bp, which codes for a protein containing 263 amino acids. On-ApoA-I shared over 60% sequence similarity with other teleost fish and more than 20% with mammalian ApoA-I. On-ApoA-I was found to be highly expressed in the liver and significantly induced during Streptococcus agalactiae infection by qRT‒PCR analysis. Furthermore, invivo studies revealed that recombinant On-ApoA-I protein could suppress inflammation and apoptosis and improve the likelihood of surviving bacterial infection. Additionally, On-ApoA-I showed invitro antimicrobial properties against Gram-positive and Gram-negative bacteria. These findings offer a theoretical basis for further investigations into the role of ApoA-I in fish immunology.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Proteínas de Peixes/química , Regulação da Expressão Gênica , Mamíferos/metabolismo
3.
Fish Shellfish Immunol ; 139: 108923, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37394017

RESUMO

CD27 is a member of the TNF-receptor superfamily and plays various roles in immunities. However, the detailed information and mechanism of CD27 in bony fish immunity remain unclear. Therefore, in this research, certain interesting roles of CD27 in Nile tilapia (On-CD27) were determined. On-CD27 was largely expressed in the immune organs, head kidney, and spleen, and was sharply induced during bacterial infection. The in vitro tests suggested On-CD27 was involved in regulating inflammatory responses, activating immune-related signal pathways, and inducing apoptosis and pyroptosis progress. The scRNA data and in vivo experiments indicated that On-CD27 is mainly expressed in CD4+ T cells and involved in both innate and adaptive immunities. The present data provide a theoretical principle for further research on the mechanisms of CD27 in the innate and adaptive immunities of fish.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Proteínas de Peixes , Baço , Rim Cefálico , Streptococcus agalactiae/fisiologia , Imunidade Inata/genética , Regulação da Expressão Gênica
4.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499231

RESUMO

Vasoactive intestinal peptide (VIP), a member of secretin/glucagon family, is involved in a variety of biological activities such as gut motility, immune responses, and carcinogenesis. In this study, the VIP precursor gene (On-VIP) and its receptor gene VIPR1 (On-VIPR1) were identified from Nile tilapia (Oreochromis niloticus), and the functions of On-VIP in the immunomodulation of Nile tilapia against bacterial infection were investigated and characterized. On-VIP and On-VIPR1 contain a 450 bp and a 1326 bp open reading frame encoding deduced protein of 149 and 441 amino acids, respectively. Simultaneously, the transcript of both On-VIP and On-VIPR1 were highly expressed in the intestine and sharply induced by Streptococcus agalatiae. Moreover, the positive signals of On-VIP and On-VIPR1 were detected in the longitudinal muscle layer and mucosal epithelium of intestine, respectively. Furthermore, both in vitro and in vivo experiments indicated several immune functions of On-VIP, including reduction of P65, P38, MyD88, STAT3, and AP1, upregulation of CREB and CBP, and suppression of inflammation. Additionally, in vivo experiments proved that On-VIP could protect Nile tilapia from bacterial infection and promote apoptosis and pyroptosis. These data lay a theoretical basis for further understanding of the mechanism of VIP guarding bony fish against bacterial infection.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae , Doenças dos Peixes/genética , Doenças dos Peixes/prevenção & controle , Regulação da Expressão Gênica
5.
Fish Shellfish Immunol ; 131: 929-938, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36343851

RESUMO

α-Melanocyte-stimulating hormone (α-MSH) is a well-studied neuropeptide controlling skin and hair color. Besides, numerous immunomodulation roles of α-MSH were recorded in humans and mice. However, the regulatory effects of α-MSH in teleost immunity haven't been well elucidated. In this study, several precursor molecules of α-MSH (POMCs) and its receptors (MCRs) in Nile tilapia (Oreochromis niloticus) were characterized, and their expression characteristics and specific functions on antibacterial immunity were determined. Overall, POMCs and MCRs were principally detected in the brain, skin, and liver, and were remarkably promoted post Streptococcus agalactiae infection. However, tiny POMCs and MCRs were observed in tilapia immune organs (head kidney and spleen) or lymphocytes, and no evident immunomodulation effect was detected in vitro. Moreover, the in vivo challenge experiments revealed that α-MSH protects tilapia from bacterial infection by regulating responses in the brain and intestine. This study lays theoretical data for a deeper comprehension of the immunomodulation mechanisms of teleost α-MSH and the evolutional process of the vertebrate melanocortin system.


Assuntos
Doenças dos Peixes , Imunomodulação , Infecções Estreptocócicas , Tilápia , alfa-MSH , Animais , alfa-MSH/metabolismo , Sequência de Aminoácidos , Antibacterianos , Ciclídeos/imunologia , Ciclídeos/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Regulação da Expressão Gênica , Imunomodulação/fisiologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Tilápia/imunologia , Tilápia/microbiologia
6.
Fish Shellfish Immunol ; 131: 218-228, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36198379

RESUMO

C-type lectin (CLEC) is a family of carbohydrate-binding protein that has high affinity for calcium and mediates multiple biological events including adhesion between cells, the turnover of serum glycoproteins, and the innate immune system's reaction to prospective invaders. However, it's ill-defined for how CLEC effects bony fish's innate immunity to bacterial infection. Therefore, CLEC12B, a member of the C-type lectin domain family, was found in Nile tilapia (Oreochromis niloticus) and its functions in bacterial infection were examined. The OnCLEC12B consist of a C-type lectin domain, a transmembrane domain, and a hypothetical protein of 308 amino acids that encoded by 927 bp basic group. Besides, the OnCLEC12B protein have a series of highly conserved amino acid sites with other CLEC12B proteins. Subcellular localization showed that OnCLEC12B located in cell membrane. Transcriptional levels investigation showed that OnCLEC12B was extensively expressed in all selected organs and has high expression in the liver. The transcriptional levels of OnCLEC12B were induced by Streptococcus agalactiae and Aeromonas hydrophila in the liver, spleen, head kidney, brain, and intestine. Afterward, invitro study revealed that several kinds of pathogens could be bound and agglutinated by recombinant protein of OnCLEC12B (rOnCLEC12B). Moreover, rOnCLEC12B could not only promote the proliferation of monocytes/macrophages but also encourage its phagocytosis on S.agalactiae and A.hydrophila, and its over-expression could significantly suppress the activation of the NF-κB pathway. Summarily, our results indicated that OnCLEC12B gets involved in fish immunization activities to pathogens infection.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Proteínas de Peixes/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Estudos Prospectivos , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Imunidade Inata/genética , Regulação da Expressão Gênica
7.
Fish Shellfish Immunol ; 130: 602-611, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150410

RESUMO

Pyroptosis is an inflammatory and programmed cell death initiated by the formation of the inflammasome, which consists of NLR, ASC, and Caspase. Pyroptosis has received growing attention due to its association with innate immunity and various diseases. However, the involvement and induction of the NLRCs and pyroptosis-related genes in fish immunity remain poorly studied. In this study, several NLRCs and pyroptosis-related genes in Nile tilapia (Oreochromis niloticus) were identified and characterized. Their involvement in bacterial infection and expression profiles in Nile tilapia lymphocyte responses were also assessed. Overall, three NLRC members (NOD1, NOD2, and NLRC3) and five pyroptosis-related genes (ASC1, Caspase1, Gsdme, NLRP3, and NLRP14) in Nile tilapia were cloned and characterized. The transcript levels of these molecules were broadly distributed in various tissues with comparatively high expression in the gills, intestine, and spleen. Their transcripts were also induced during Streptococcus agalactiae or Aeromonas hydrophila infection. Moreover, they were primarily expressed in T cells, NCCs, and Mo/Mφ and showed antibacterial and partially antiviral responses. The present study lays a theoretical foundation for further investigation of the pyroptosis mechanisms in fish as well as the evolution of the antiviral roles of pyroptosis in vertebrates.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Antibacterianos , Antivirais , Caspases/genética , Proteínas de Peixes , Regulação da Expressão Gênica , Imunidade Inata/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose/genética , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia
8.
Front Immunol ; 13: 944388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967362

RESUMO

Serotonin (5-hydroxytryptamine) is a well-known neurotransmitter affecting emotion, behavior, and cognition. Additionally, numerous immunomodulatory functions of serotonin have been discovered in mammals. However, the regulatory role of the serotonin system in fish immunity remains unclear. In this study, various serotonergic markers in Nile tilapia (Oreochromis niloticus) were identified and characterized. The involvement of the serotonin system during bacterial infection was investigated. Moreover, the expression characteristics and specific functions of serotonergic markers within Nile tilapia immune cells were also assessed. Overall, 22 evolutionarily conserved serotonergic marker genes in Nile tilapia were cloned and characterized. Transcriptional levels of these molecules were most abundant in the brain, and their transcripts were induced during Streptococcus agalactiae infection. Nevertheless, few serotonergic markers exist on Nile tilapia immune cells, and no distinct immunomodulation effect was observed during an immune response. The present study lays a theoretical foundation for further investigation of the immunological mechanisms in fish as well as the evolution of the serotonin system in animals.


Assuntos
Ciclídeos , Doenças dos Peixes , Sequência de Aminoácidos , Animais , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Imunidade , Imunomodulação , Mamíferos/metabolismo , Serotonina , Streptococcus agalactiae/fisiologia
9.
Biology (Basel) ; 11(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36009776

RESUMO

C-reactive protein (CRP) is an acute-phase protein that can be used as an early diagnostic marker for inflammation, which is also an evolutionarily conserved protein and has been identified from arthropods to mammals. However, the roles of CRP during the immune response of Nile tilapia (Oreochromis niloticus) remain unclear. In this study, a CRP gene from Nile tilapia (On-CRP) was identified, and its roles in response to bacterial infection were investigated in vivo or in vitro. On-CRP was found to contain an open reading frame of 675 bp, encoding a polypeptide of 224 amino acids with the conservative pentraxin domain. On-CRP shares more than 50% of its identity with other fish species, and 30% of its identity with mammals. The transcriptional level of On-CRP was most abundant in the liver and its transcripts can be remarkably induced following Streptococcus agalactiae and Aeromonas hydrophila infection. Furthermore, in vitro analysis indicated that the recombinant protein of On-CRP improved phagocytic activity of monocytes/macrophages, and possessed a bacterial agglutination activity in a calcium-dependent manner. Both in vivo and in vitro experiments indicated that On-CRP could promote inflammation and activate the complement pathway. However, a direct relationship between CRP and several immune pathways could not be confirmed. The present data lays a theoretical foundation to further explore the mechanism of how CRP protects fish against bacterial infection.

10.
Fish Shellfish Immunol ; 123: 218-228, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35257891

RESUMO

Substance P (SP) is a neuropeptide that involves in a wide variety of physiological and pathological events, mainly exerts its roles by neurokinin 1 receptor (NK1R), also modulates immune function. However, the roles of SP during immune response to acute bacterial infection of Nile tilapia (Oreochromis niloticus) remain unclear. In this study, the gene of SP precursor (tachykinin precursor 1, TAC1) and the gene of SP receptor (NK1R) from Nile tilapia were identified, and the roles of SP during an acute bacterial infection in a warm water environment were investigated. On-TAC1(Oreochromis niloticus-TAC1) contains conservative SP & NKA peptide sequences and On-NK1R contains seven conservative transmembrane domains. Their transcriptional levels were most abundant in brain and the On-TAC1 transcripts can be induced in the tilapia challenged with Streptococcus agalactiae. Furthermore, the experimental results revealed that On-SP could promote pyroptosis, suppress inflammation, and improve survival rate during acute bacterial infection. The present data lays a theoretical foundation to further elucidate the mechanism of SP protecting fish against pathogens.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Proteínas de Peixes , Streptococcus agalactiae/fisiologia , Substância P
11.
Fish Shellfish Immunol ; 122: 257-267, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35149211

RESUMO

Nuclear factor E2-related factor 2 (Nrf2) is a multifunctional transcription factor that plays an important role in antioxidant activities. However, its effect on antioxidant capacity in Litopenaeus vannamei, an economically important crustacean, remains unclear. In this study, the role of Nrf2 in response to oxidative stress in L. vannamei was determined by its effect on relevant gene expression and enzymatic activity. Nrf2 was cloned and analyzed. Results revealed that Nrf2 contains a 1575 bp open reading frame encoding 524 amino acids and a conserved bZIP Maf domain. The sequence similarity of Nrf2 between L. vannamei and Homarus americanus is 81%. Although the Nrf2 expression was detected in all tissues, the Nrf2 expression levels were the highest in the hepatopancreas, followed by the eyestalk and muscle. RNA interference significantly decreased the expression of antioxidant-related genes (SOD, GPX, CAT, Trx, and HO-1; p < 0.05), significantly upregulated the expression of autophagy genes (Atg3, Atg4, Atg5, Atg10, and Atg12; p < 0.05) and apoptosis genes (Caspase-3 and P53; p < 0.05). Moreover, SOD, CAT, and GPX enzyme activities decreased whereas the MDA activity increased. The histological results of the shrimp injected with dsRNA-Nrf2 showed that the hepatic tubules were irregularly arranged, the lumen was abnormal, and a few hepatic tubules were significantly enlarged compared with those of the dsRNA-EGFP group. The hepatocytes were also vacuolated. In conclusion, this study provided evidence that Nrf2 is involved in the regulation of antioxidant capacity, oxidative stress, apoptosis, and autophagy in shrimp.


Assuntos
Antioxidantes , Penaeidae , Animais , Antioxidantes/metabolismo , Apoptose , Autofagia , Fator 2 Relacionado a NF-E2/genética , Penaeidae/fisiologia
12.
Fish Shellfish Immunol ; 119: 499-507, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34687883

RESUMO

High-mobility group 20 A (HMG20A) has important biological functions, such as inhibiting the differentiation of red blood cells and nerve cells, promoting the proliferation and metastasis of cancer cells, and regulating inflammatory reaction. However, the role of HMG20A in the response to bacterial infection in the economic fish Nile tilapia (Oreochromis niloticus) remains unclear. In this study, a HMG20A homolog was successfully identified and characterized from Nile tilapia (On-HMG20A), and its expression model and biological effects on bacterial infection were analyzed. The open reading frame (ORF) of On-HMG20A was 876 bp in length, which encoded 291 amino acids and possessed a HMG domain (High mobility group domains) and coiled coil region. Results of the expression model showed that On-HMG20A was widely distributed in immune-related tissues of healthy tilapia and upregulated in a time-dependent manner after being challenged by Streptococcus agalactiae. Meanwhile, knocking down the expression of On-HMG20A can reduce the inflammatory response of tilapia and the degree of tissue damage caused by S. agalactiae. Moreover, knocking down the expression of On-HMG20A can reduce the bacterial load of tilapia tissues after being challenged by S. agalactiae and improve the survival rate. Collectively, these results showed that On-HMG20A may be related to the immune response of Nile tilapia against bacterial infection.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Sequência de Aminoácidos , Animais , Ciclídeos/genética , Ciclídeos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Imunidade Inata/genética , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/metabolismo , Tilápia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA