Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(26): 14539-14547, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345976

RESUMO

Copolymerization of elemental sulfur (S8) with vinyl monomers to develop new polymer materials is significant. Here, for the first time, we report the anionic hybrid copolymerization of S8 with acrylate at 25 °C, yielding a copolymer with short polysulfide segments; i.e., each of them consists of only one to four sulfur atoms. The formation of a longer polysulfide segment would be ceaselessly disrupted by carbon anions through the chain-transfer reaction. The copolymer of S8 with diacrylate was cross-linked and exhibited excellent mechanical properties, with an ultimate tensile strength as high as 10.7 MPa and a breaking strain of 22%. Furthermore, the introduction of tertiary amide groups to the copolymer enabled it not only to be reprocessed via press molding at room temperature but also to exhibit self-healing properties without external intervention. This study provides a facile strategy to synthesize high-performance sulfur-based copolymers under mild conditions.

2.
ACS Macro Lett ; 11(5): 687-692, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35570808

RESUMO

Compartmentalized micelles (CMs) are promising tailor-made soft matters that mimic natural designed structures and functions. Despite the structure of complex CMs, manipulating CM structures accessibly and reversibly remains elusive. Here, we report the fabrication of CMs via a generally valid noncovalent postmodification process. Starting from precursor micelles (PMs) based on one diblock copolymer, aromatic modification leads to the compartmentalization of PMs into well-defined spherical CMs. Control over compartment number, size and distribution in CMs, and segment distribution in their linear hierarchical assemblies is attained by simply tuning the postmodification degree and solvent composition. We also demonstrate the reversible transformation between PM and CMs during several heating-cooling cycles, which endows the micelles with potential in reversible functional transitions in situ close to nature's capability. Moreover, both hierarchically assembled or ill-structured micelles can rearrange into homogeneous CMs after one heating-cooling cycle, featuring the postmodification guided compartmentalization strategy with unprecedented micelle reproducibility.


Assuntos
Micelas , Polímeros , Polímeros/química , Reprodutibilidade dos Testes
3.
Chem Commun (Camb) ; 57(3): 399-402, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33326513

RESUMO

A typical multicyclic branched-topology polystyrene (c-BPS) with high molecular weight (30 K ≤ Mw MALLS ≤ 300 K g mol-1) and narrow dispersity (1.2 ≤ D ≤ 1.3) was efficiently synthesized by combining atom transfer radical polymerization (ATRP) and atom transfer radical coupling (ATRC) techniques. The topological constraints imposed by the presence of cyclic units and branch points had a marked influence on the entanglement behaviors of the polymer chains in solution. Therefore, c-BPS possesses the lowest loss modulus (G'') and viscosity (η), the highest diffusion coefficient (D0), the largest mesh size (ξ) and the fastest terminal relaxation (TR), compared with branched and linear precursors.

4.
ACS Appl Mater Interfaces ; 12(45): 50870-50878, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33125218

RESUMO

The amide bond is one of the most pivotal functional groups in chemistry and biology. It is also the key component of proteins and widely present in synthetic materials. The majority of studies have focused on the formation of the amide group, but its postmodification has scarcely been investigated. Herein, we successfully develop the Michael additions of amide to acrylate, acrylamide, or propiolate in the presence of phosphazene base at room temperature. This amide Michael addition is much more efficient when the secondary amide instead of the primary amide is used under the same conditions. This reaction was applied to postfunctionalize poly(methyl acrylate-co-acrylamide), P(MA-co-Am), and it is shown that the amide groups of P(MA-co-Am) could be completely modified by N,N-dimethylacrylamide (DMA). Interestingly, the resulting copolymer exhibited tailorable fluorescence with emission wavelength ranging from 380 to 613 nm, which is a desired property for luminescent materials. Moreover, the emissions of the copolymer increased with increasing concentration in solution for all excitation wavelengths from 320 to 580 nm. Therefore, this work not only develops an efficient t-BuP4-catalyzed amide Michael addition but also offers a facile method for tunable multicolor photoluminescent polymers, which is expected to find a wide range of applications in many fields, such as in anticounterfeiting technology.

5.
ACS Appl Mater Interfaces ; 12(14): 16849-16855, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32181634

RESUMO

The antifouling properties of traditional self-polishing marine antifouling coatings are mainly achieved based on their hydrolysis-sensitive side groups or the degradable polymer main chains. Here, we prepared a highly branched copolymer for self-polishing antifouling coatings, in which the primary polymer chains are bridged by degradable fragments (poly-ε-caprolactone, PCL). Owing to the partial or complete degradation of PCL fragments, the remaining coating on the surface can be broken down and eroded by seawater. Finally, the polymeric surface is self-polished and self-renewed. The designed highly branched copolymers were successfully prepared by reversible complexation mediated polymerization (RCMP), and their primary main chains had an Mn of approximately 3410 g·mol-1. The hydrolytic degradation results showed that the degradation of the copolymer was controlled, and the degradation rate increased with increasing contents of degradable fragments. The algae settlement assay tests indicated that the copolymer itself has some antibiofouling ability. Moreover, the copolymer can serve as a controlled release matrix for antifoulant 4,5-dichloro-2-octylisothiazolone (DCOIT), and the release rate increases with the contents of degradable fragments. The marine field tests confirmed that these copolymer-based coatings exhibited excellent antibiofouling ability for more than 3 months. The current copolymer is derived from commonly used monomers and an easily conducted polymerization method. Hence, we believe this method may offer innovative insights into marine antifouling applications.

6.
ACS Appl Mater Interfaces ; 12(9): 11171-11179, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030972

RESUMO

Here, we coined the term "clayene" for a single layer of clay and "few-layer clayene" for clays with 2-10 layers. Few-layer clayenes, which are Fe2+-rich and mica-type, were prepared hydrothermally at 200 °C and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/high-resolution transmission electron microscopy (HRTEM) to determine the crystalline phases and morphology, respectively. Chemical composition by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy confirmed the iron-rich mica composition, and the latter also revealed the presence of both Fe2+ and Fe3+. Mössbauer spectroscopy further confirmed the presence of Fe2+ and Fe3+ and their proportions in the mica-type few-layer clayenes. All of the synthesized mica-type few-layer clayenes except one exhibited high specific surface areas (SSAs) ranging from 94 to 149 m2/g as determined by N2 adsorption-desorption isotherms and the Brunauer-Emmett-Teller (BET) equation. The high surface areas are in conformity with the crystal sizes calculated from XRD peaks and also as revealed by HRTEM. Taking advantage of the interfacial reactions of the high surface area of few-layer clayenes, two potential applications of clayenes were demonstrated in materials and environmental fields.

7.
Chem Commun (Camb) ; 54(21): 2682-2685, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29479620

RESUMO

Here, we report a remarkable 15 Å nanolayered tin phosphate, Sn(HPO4)2·3H2O (SnP-H+ or SnP), and its clay-like gel, which are multifunctional and are prepared using earth-abundant Sn and P chemicals by a facile, environmentally benign and potentially cost-effective process. This new energy material is discovered here as the best proton conductor among all the known layered phosphates with a very high proton conductivity of over 1 × 10-2 S cm-1 at 100 °C for potential use in PEM fuel cells. But it is also a very good capacitor material with fast Li-storage kinetics (charging time of 13 s).

8.
Polymers (Basel) ; 9(1)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30970692

RESUMO

Radical solvent-free suspension polymerization of styrene with 3-mercapto hexyl-methacrylate (MHM) as the branching monomer has been carried out using 2,2'-azobisisobutyronitrile (AIBN) as the initiator to prepare branched polymer beads of high purity. The molecular weight and branching structure of the polymers have been characterized by triple detection size exclusion chromatography (TD-SEC), proton nuclear magnetic resonance spectroscopy (¹H-NMR), and Fourier transform infrared spectroscopy (FTIR). The glass transition temperature and rheological properties have been measured by using differential scanning calorimetry (DSC) and rotational rheometry. At mole ratios of MHM to AIBN less than 1.0, gelation was successfully avoided and branched polystyrene beads were prepared in the absence of any solvent. Branched polystyrene has a relatively higher molecular weight and narrower polydispersity (Mw.MALLS = 1,036,000 g·mol-1, Mw/Mn = 7.76) than those obtained in solution polymerization. Compared with their linear analogues, lower glass transition temperature and decreased chain entanglement were observed in the presently obtained branched polystyrene because of the effects of branching.

9.
Polymers (Basel) ; 8(5)2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30979277

RESUMO

Hyperbranched poly(N-isopropylacrylamide)s (HBPNIPAMs) end-capped with different azobenzene chromophores (HBPNIPAM-Azo-OC3H7, HBPNIPAM-Azo-OCH3, HBPNIPAM-Azo, and HBPNIPAM-Azo-COOH) were successfully synthesized by atom transfer radical polymerization (ATRP) of N-isopropylacrylamide using different azobenzene-functional initiators. All HBPNIPAMs showed a similar highly branched structure, similar content of azobenzene chromophores, and similar absolute weight/average molecular weight. The different azobenzene structures at the end of the HBPNIPAMs exhibited reversible trans-cis-trans isomerization behavior under alternating UV and Vis irradiation, which lowered the critical solution temperature (LCST) due to different self-assembling behaviors. The spherical aggregates of HBPNIPAM-Azo-OC3H7 and HBPNIPAM-Azo-OCH3 containing hydrophobic para substituents either changed to bigger nanorods or increased in number, leading to a change in LCST of -2.0 and -1.0 °C, respectively, after UV irradiation. However, the unimolecular aggregates of HBPNIPAM-Azo were unchanged, while the unstable multimolecular particles of HBPNIPAM-Azo-COOH end-capped with strongly polar carboxyl groups partly dissociated to form a greater number of unimolecular aggregates and led to an LCST increase of 1.0 °C.

10.
Chem Commun (Camb) ; 51(86): 15661-4, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26359760

RESUMO

Herein, we report a unique tin phosphate that is remarkably selective to (137)Cs(+) from extremly acidic solutions because of its special layered structure with an unusually large interlayer space. This acidic exchanger is superior to other existing materials in terms of its selectivity and capacity for (137)Cs(+) from acidic solutions.

11.
Macromol Rapid Commun ; 35(3): 330-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24356908

RESUMO

The novel hyperbranched poly(methyl acrylate)-block-poly(acrylic acid)s (HBPMA-b-PAAs) are successfully synthesized via single-electron transfer-living radical polymerization (SET-LRP), followed with hydrolysis reaction. The copolymer solution could spontaneously form unimolecular micelles composed of the hydrophobic core (PMA) and the hydrophilic shell (PAA) in water. Results show that the size of spherical particles increases from 8.18 to 19.18 nm with increased pH from 3.0 to 12.0. Most interestingly, the unique regular quadrangular prisms with the large microstructure (5.70 µm in length, and 0.47 µm in width) are observed by the self-assembly of unimolecular micelles when pH value is below 2. Such self-assembly behavior of HBPMA-b-PAA in solution is significantly influenced by the pH cycle times and concentration, which show that increased polymer concentration favors aggregate growth.


Assuntos
Acrilatos/química , Resinas Acrílicas/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Micelas , Estrutura Molecular , Polimerização , Polímeros/síntese química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA