Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 983570, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275753

RESUMO

Objective: Lung adenocarcinoma (LUAD) is the most prevalent lung cancer subtype, but its immune infiltration features are not comprehensively understood. To address the issue, the present study was initiated to describe the immune infiltrations across LUAD from cellular compositional, functional, and mechanism perspectives. Methods: We adopted five LUAD datasets (GSE32863, GSE43458, GSE75037, TCGA-LUAD, and GSE72094). Differentially expressed genes between LUAD and controls were selected for co-expression network analysis. Risky immune cell types were determined for classifying LUAD patients as diverse subtypes, followed by a comparison of antitumor immunity and therapeutic response between subtypes. Then, LUAD- and subtype-related key module genes affected by DNA methylation were determined for quantifying a scoring scheme. EXO1 was chosen for functional analysis via in vitro assays. Results: Two immune cell infiltration-based subtypes (C1 and C2) were established across LUAD, with poorer prognostic outcomes and lower infiltration of immune cell types in C1. Additionally, C1 presented higher responses to immune checkpoint blockade and targeted agents (JNK inhibitor VIII, BI-D1870, RO-3306, etc.). The scoring system (comprising GAPDH, EXO1, FYN, CFTR, and KLF4) possessed higher accuracy in estimating patients' prognostic outcomes. EXO1 upregulation contributed to the growth, migration, and invasion of LUAD cells. In addition, EXO1 facilitated PD-L1 and sPD-L1 expression in LUAD cells. Conclusion: Altogether, our findings offer a comprehensive understanding of the immune infiltration landscape on prognosis and therapeutic response of LUAD as well as unveil potential epigenetic and transcriptomic mechanisms, which might assist personalized treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Transcriptoma , Inibidores de Checkpoint Imunológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Prognóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Epigênese Genética
2.
ACS Appl Bio Mater ; 1(3): 604-612, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34996193

RESUMO

Monodisperse porous silica microspheres with a tunable particle size and pore size were fabricated by utilizing porous polymer microspheres as a novel hard template during the sol-gel process followed by calcination to remove the polymer. The particle size and pore size could be simply tuned by the feature of the polymer template and reaction conditions such as different functionalization of the parent polymer template, particle size of polymer template, and amount of TEOS during the sol-gel process. EDA (ethylenediamine), APTES (3-aminopropyl)triethoxysilane, and TMA (trimethylamine hydrochloride) functionalization of porous poly(GMA-co-EGDMA) microspheres were carried out to study their effect on the synthesized porous silica microspheres. The TMA-functionalized polymer microspheres led to a higher yield, smaller silica nanoparticles, and no self-nucleation of TEOS due to their positive surface charge. Furthermore, no addition of NaOH during TMA functionalization and the amount of TEOS during the sol-gel process played key roles in determining the pore size and particle size of porous silica microspheres. Then, through poly(aspartic acid) coating of the APTES-functionalized monodisperse porous silica microspheres, the modified monodisperse porous silica microspheres were explored as the stationary phase of HPLC for protein separation. The effects of particle size and pore size on the chromatographic behavior were discussed. When the protein mixture composed of transferrin, hemoglobin, ribonuclease A, cytochrome C, and lysozyme was used as the model analytes, the as-prepared silica microspheres exhibited an excellent separation performance with a high protein recovery and good reproducibility.

3.
Nanoscale Res Lett ; 12(1): 609, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29185128

RESUMO

A novel triphenylphosphine-based porous polymer (TPDB) with a high Brunauer-Emmett-Teller (BET) surface area was synthesized through Friedel-Crafts alkylation of triphenylphosphine and α-dibromo-p-xylene. Then, the functional hydroxyl groups were successfully grafted onto the polymer framework by post modification of TPDB with 3-bromo-1-propanol (BP) and triethanolamine (TEA). The resulting sample TPDB-BP-TEA was characterized by various techniques such as FT-IR, TG, SEM, EDS mapping, ICP-MS, and N2 adsorption-desorption. This new polymer was tested as the catalyst in the solvent-free cycloaddition reaction of CO2 with epoxides, which exhibited excellent performance, with high yield, selectivity, and stable recyclability for several catalytic cycles. The comparison experiment results demonstrate that the bromide ions and hydroxyl groups, as well as high surface area, are key factors in improving the catalytic activity of this new catalyst.

4.
Nanoscale Res Lett ; 12(1): 30, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28084613

RESUMO

Although many studies have attempted to develop strategies for spontaneously organizing nanoparticles (NPs) into three-dimensional (3D) geometries, it remains a fascinating challenge. In this study, a method for in situ synthesis and self-assembly of a CdS quantum dots (QDs) gel using a Cd supramolecular gel as a scaffold was demonstrated. During the QDs formation process, the Cd ions that constituted the Cd gels served as the precursors of the CdS QDs, and the oleic acid (OA) that ligated with the Cd in the supramolecular gels was capped on the surface of the CdS QDs in the form of carboxylate. The OA-stabilized CdS QDs were in situ synthesized in the entangled self-assembled fibrillar networks (SAFIN) of the Cd gels through reactions between the gelator and H2S. As a result, the QDs exactly replicated the framework of the SAFIN in the CdS QD gels instead of simply assembling along the SAFIN of the supramolecular gels. Moreover, the CdS QDs showed extraordinary sensitivity in the fluorescence detection of IO4- anions. The facile one-step method developed here is a new approach to assembling nanostructured materials into 3D architectures and has general implications for the design of low molecular mass gelators to bring desired functionality to the developed supramolecular gels.

5.
Nanoscale Res Lett ; 9(1): 163, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24708885

RESUMO

Merging nanoparticles with different functions into a single microsphere can exhibit profound impact on various applications. However, retaining the unique properties of each component after integration has proven to be a significant challenge. Our previous research demonstrated a facile method to incorporate magnetic nanoparticles into porous silica microspheres. Here, we report the fabrication of porous silica microspheres embedded with magnetic and gold nanoparticles as magnetic recoverable catalysts. The as-prepared multifunctional composite microspheres exhibit excellent magnetic and catalytic properties and a well-defined structure such as uniform size, high surface area, and large pore volume. As a result, the very little composite microspheres show high performance in catalytic reduction of 4-nitrophenol, special convenient magnetic separability, long life, and good reusability. The unique nanostructure makes the microspheres a novel stable and highly efficient catalyst system for various catalytic industry processes.

6.
ACS Appl Mater Interfaces ; 6(4): 2718-25, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24447149

RESUMO

Monodisperse porous zirconia (ZrO2) microspheres with nanocrystallized framework were fabricated by impregnation of porous polymer microspheres as a novel hard template with zirconia precursors followed by calcination to remove the template. Porous phosphorylated zirconia (PhZr) microspheres were prepared by further treating porous zirconia microspheres with phosphoric acid. The morphology, structure, and properties of these microspheres were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption measurement, FT-IR, and X-ray powder diffraction. The as-prepared zirconia and phosphorylated zirconia microspheres showed uniform particle size and well-defined morphology. The phosphorylated zirconia microspheres served as highly active solid acid catalysts for Friedel-Crafts alkylation of indoles with chalcones and could be reused for 22 cycles with negligible loss of activity. In situ pyridine-adsorbed FT-IR analysis of the best performing PhZr microspheres suggested the presence of both Lewis and Brønsted acid sites, and the total acidity as measured by temperature-programmed desorption of ammonia (NH3-TPD) was 328 µmol·g(-1).

7.
Chem Commun (Camb) ; 48(50): 6235-7, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22595867

RESUMO

Polystyrene-polyamidoamine-supported gold nanoparticles were prepared using a reductant-directed formation strategy. The resulting catalysts exhibited excellent activities in the aerobic oxidation of benzyl alcohols and the homocoupling of phenylboronic acids under mild conditions and can be recycled at least 14 times without significant loss of activity.


Assuntos
Álcoois Benzílicos/química , Ácidos Borônicos/química , Ouro/química , Nanopartículas Metálicas/química , Substâncias Redutoras/química , Catálise , Dendrímeros/química , Éteres/síntese química , Éteres/química , Cetonas/síntese química , Cetonas/química , Oxirredução , Tamanho da Partícula , Poliestirenos/química , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 4(5): 2735-42, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22540143

RESUMO

We report a preparation method for the synthesis of monodisperse magnetic polymer/silica hybrid microspheres using polymer microspheres incorporated with magnetic nanoparticles as a novel template. Monodisperse, hierarchically mesoporous, silica microspheres embedded with magnetic nanoparticles were successfully fabricated after the calcination of the hybrid microspheres. The magnetic nanoparticles were encapsulated in silica and distributed over the whole area of the porous microspheres without leakage. The resulting inorganic materials possess highly useful properties such as high magnetic nanoparticle loading, high surface area, and large pore volumes. The hierarchically mesoporous magnetic silica microspheres resulted in a high bovine serum albumin (BSA) protein adsorption capacity (260 mg/g) and a fast adsorption rate (reaching equilibrium with 8 h).


Assuntos
Nanopartículas de Magnetita/química , Microesferas , Soroalbumina Bovina/química , Dióxido de Silício/química , Adsorção , Animais , Bovinos , Porosidade
10.
J Chromatogr A ; 1217(8): 1219-26, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20047750

RESUMO

A new Fe(3)O(4)/poly(divinylbenzene-co-methacrylic acid) core-shell magnetite microspheric material have been successfully developed as magnetic-mediated solid-phase extraction micro-particle sorbent in dispersion mode (MM-SPE-MP) for the determination of selected estrogenic endocrine disrupting chemicals (EDCs), namely: estrone (E1), 17beta-estradiol (E2), estriol (E3), 17alpha-ethynylestradiol (EE2) and bisphenol-A (BPA), in natural water, via quantification by HPLC tandem mass spectrometry. The magnetite Fe(3)O(4) core of this MM-SPE-MP sorbent was fabricated by a solvothermal approach and the thin layer of amphipolar poly(divinylbenzene-co-methacrylic acid) (pDVB-MAA) coating was established via suspension polymerization. The resultant core-shell MM-SPE-MP sorbent material was characterized by electron microscopy, X-ray diffraction and Fourier-transformed infrared spectroscopy. Particle size distribution of the core-shell microspheres was within the range 300-700 nm in diameter and the thickness of the pDVB-MAA coating was ca. 10nm. This magnetite microspheric material can be easily dispersed in aqueous samples and retrieved by the application of external magnetic field via a small piece of permanent magnet. The MM-SPE-MP process for the selected estrogenic EDCs involved the dispersion of the core-shell microspheric sorbent in water samples with sonication, followed by magnetic aided retrieval of the sorbent and solvent (methanol) desorption of extracted EDCs for LC-MS/MS analysis. Partition equilibrium for all the selected EDCs onto this MM-SPE-MP sorbent was achieved within 15 min. Recoveries of the EDCs were in ranges of 56-111%. Analytes with smaller K(OW) value showed relatively lower recovery (and relatively longer equilibration time for partitioning). Method detection limits achieved were found to be 1-36 pg ml(-1) (n=3), while the repeatability was 6-34% (p<0.05, n=3). This work demonstrates the usefulness of MM-SPE-MP in the rapid and highly sensitive monitoring of trace organic contaminants in natural waters.


Assuntos
Cromatografia Líquida/métodos , Disruptores Endócrinos/análise , Magnetismo , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Água/análise , Óxido Ferroso-Férrico/química , Limite de Detecção , Extração em Fase Sólida/economia , Extração em Fase Sólida/instrumentação , Fatores de Tempo , Poluentes Químicos da Água/análise
11.
Langmuir ; 26(7): 5179-83, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-19908847

RESUMO

A novel process for the preparation of monodisperse magnetic polymer microspheres by uniquely combining swelling and thermolysis technique was reported. The monodisperse polystyrene microspheres were first prepared by dispersion polymerization and swelled in chloroform. Then, ferric oleate was dispersed in chloroform as a precursor and impregnated into the swollen polymer microspheres. Subsequently, the iron oxide nanoparticles were formed within the polymer matrix by thermal decomposition of ferric oleate. The morphology, inner structure, and magnetic properties of the magnetic polymer microspheres were studied with a field emission scanning electron microscope (SEM), transmission electron microscope (TEM), and superconducting quantum interference device (SQUID) magnetometer. The results showed that the average diameter of the magnetic polymer microspheres was 5.1 microm with a standard deviation of 0.106, and the magnetic polymer microspheres with saturation magnetization of 12.6 emu/g exhibited distinct superparamagnetic characteristics at room temperature. More interestingly, the magnetite nanoparticles with a spinel structure are evenly distributed over the whole area of the polymer microspheres. These magnetic polymer microspheres have potential applications in biotechnology.


Assuntos
Magnetismo , Nanopartículas Metálicas/química , Microesferas , Polímeros/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Teóricos , Nanotecnologia
12.
Chem Commun (Camb) ; (40): 5990-2, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19809620

RESUMO

Magnetically recyclable Hoveyda-Grubbs catalyst can be readily assembled using magnetic nanoparticles as support, and this catalyst combines convenient recyclability and excellent activity on ring-closing metathesis (RCM) reactions.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Rutênio/química , Catálise , Ciclização , Magnetismo , Estrutura Molecular , Nanopartículas , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA