Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410046, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032152

RESUMO

Fast-charging capability and calendar life are critical metrics in rechargeable batteries, especially in silicon-based batteries that are susceptible to sluggish Li+ desolvation kinetics and HF-induced corrosion. No existing electrolyte simultaneously tackles both these pivotal challenges. Here we report a microscopically heterogeneous covalent organic nanosheet (CON) colloid electrolyte for extremely fast-charging and long-calendar-life Si-based lithium-ion batteries. Theoretical calculations and operando Raman spectroscopy reveal the fundamental mechanism of the multiscale noncovalent interaction, which involves the mesoscopic CON attenuating the microscopic Li+-solvent coordination, thereby expediting the Li+ desolvation kinetics. This electrolyte design enables extremely fast-charging capabilities of the full cell, both at 8C (83.1% state of charge) and 10C (81.3% state of charge). Remarkably, the colloid electrolyte demonstrates record-breaking cycling performance at 10C (capacity retention of 92.39% after 400 cycles). Moreover, benefiting from the robust adsorption capability of mesoporous CON towards HF and water, a notable improvement is observed in the calendar life of the full cell. This study highlights the role of microscopically heterogeneous colloid electrolytes in enhancing the fast-charging capability and calendar life of Si-based Li-ion batteries. Our work offers fresh perspectives on electrolyte design with multiscale interactions, providing insightful guidance for the development of alkali-ion/metal batteries operating under harsh environments.

2.
Angew Chem Int Ed Engl ; 63(25): e202403949, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38613188

RESUMO

Quasi-solid polymer electrolyte (QPE) lithium (Li)-metal battery holds significant promise in the application of high-energy-density batteries, yet it suffers from low ionic conductivity and poor oxidation stability. Herein, a novel self-built electric field (SBEF) strategy is proposed to enhance Li+ transportation and accelerate the degradation dynamics of carbon-fluorine bond cleavage in LiTFSI by optimizing the termination of MXene. Among them, the SBEF induced by dielectric Nb4C3F2 MXene effectively constructs highly conductive LiF-enriched SEI and CEI stable interfaces, moreover, enhances the electrochemical performance of the QPE. The related Li-ion transfer mechanism and dual-reinforced stable interface are thoroughly investigated using ab initio molecular dynamics, COMSOL, XPS depth profiling, and ToF-SIMS. This comprehensive approach results in a high conductivity of 1.34 mS cm-1, leading to a small polarization of approximately 25 mV for Li//Li symmetric cell after 6000 h. Furthermore, it enables a prolonged cycle life at a high voltage of up to 4.6 V. Overall, this work not only broadens the application of MXene for QPE but also inspires the great potential of the self-built electric field in QPE-based high-voltage batteries.

3.
Chemistry ; 29(20): e202203610, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36582014

RESUMO

Imine-linked covalent organic frameworks (imine-COFs) represent the most sought-after class of COFs due to their broad monomer scope and ease of synthesis. Owing to the reversible nature of imine linkages, however, the chemical stability of most imine-COFs is still far from adequate. In this context, emerging strategies, ranging from linkage chemistry to interlayer interaction, have been employed to construct stable imine-COFs for their applications in electronics, sensing, and energy storage devices. This Concept article summarizes the latest advances aimed at tuning the structural stability of imine-COFs. Furthermore, this Concept provides a prospective for the precise design of stable imine-COFs based on the characteristics of structure, physical properties, and chemical functions, as well as the mechanism of structure locking and stabilization during crystal growth.

4.
Angew Chem Int Ed Engl ; 61(35): e202208086, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35801568

RESUMO

The development of effective, stable anhydrous proton-conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre-designable structures and tailor-made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two-dimensional COFs via importing planar, rigid triazine units into the center of C3 -symmetric monomers. The developed triazine-core-based COF (denoted as TPT-COF) possesses a well-defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non-triazinyl COFs, even reaching up to 1.27×10-2  S cm-1 at 160 °C. Furthermore, the TPT-COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long-term durability.

5.
Small ; 18(6): e2105664, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854562

RESUMO

The sluggish kinetics of sulfur conversion in the cathode and the nonuniform deposition of lithium metal at the anode result in severe capacity decay and poor cycle life for lithium-sulfur (Li-S) batteries. Resolving these deficiencies is the most direct route toward achieving practical cells of this chemistry. Herein, a vertically aligned wood-derived carbon plate decorated with Co4 N nanoparticles host (Co4 N/WCP) is proposed that can serve as a host for both the sulfur cathode and the metallic lithium anode. This Co4 N/WCP electrode host drastically enhances the reaction kinetics in the sulfur cathode and homogenizes the electric field at the anode for the uniform lithium plating. Density functional theory calculations confirm the experimental observations that Co4 N/WCP provides a lower energy barrier for the polysulfide redox reaction in the cathode and a low adsorption energy for lithium deposition at the anode. Employing the Co4 N/WCP host at both electrodes in a S@Co4 N/WCP||Li@Co4 N/WCP full cell delivers a specific capacity of 807.9 mAh g-1 after 500 cycles at a 1 C rate. Additional experiments are performed with high areal sulfur loading of 4 mg cm-2 to demonstrate the viability of this strategy for producing practical Li-S cells.


Assuntos
Carbono , Lítio , Eletrodos , Enxofre , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA