Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
2.
Sensors (Basel) ; 24(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39409300

RESUMO

Hand gesture recognition plays a significant role in human-to-human and human-to-machine interactions. Currently, most hand gesture detection methods rely on fixed hand gesture recognition. However, with the diversity and variability of hand gestures in daily life, this paper proposes a registerable hand gesture recognition approach based on Triple Loss. By learning the differences between different hand gestures, it can cluster them and identify newly added gestures. This paper constructs a registerable gesture dataset (RGDS) for training registerable hand gesture recognition models. Additionally, it proposes a normalization method for transforming hand gesture data and a FingerComb block for combining and extracting hand gesture data to enhance features and accelerate model convergence. It also improves ResNet and introduces FingerNet for registerable single-hand gesture recognition. The proposed model performs well on the RGDS dataset. The system is registerable, allowing users to flexibly register their own hand gestures for personalized gesture recognition.


Assuntos
Gestos , Mãos , Reconhecimento Automatizado de Padrão , Humanos , Mãos/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Algoritmos
3.
Fish Shellfish Immunol ; 154: 109955, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39389174

RESUMO

Crowding stress is a common abiotic stressor in intensive aquaculture that negatively impacts fish species, leading to growth depression. This study primarily explored the effects of crowding stress on the growth and intestinal integrity of largemouth bass (Micropterus salmoides). A 10-week feeding experiment was conducted with two groups: a control group (0.55 kg/m³) and a crowding stress group (1.10 kg/m³). The results showed that crowding stress significantly impaired fish growth and compromised intestinal integrity. To further elucidate the underlying mechanisms, we investigated the effects of crowding stress on endoplasmic reticulum (ER) stress, autophagy and apoptosis. Our findings revealed an increased proportion of terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL)-positive cells and ER swelling in the intestines of stressed fish, along with a higher number of autophagosomes. Furthermore, there was a significant upregulation in the mRNA expression of genes related to ER stress, autophagy and apoptosis, including GRP78, eIF2α, IRE1, atg3, LC3-2, ulk1α, P62, and caspase-8. In conclusion, crowding stress negatively affects fish growth and intestinal integrity, potentially through the induction of apoptosis and autophagy associated with ER stress-mediated unfolded protein response (UPR). These findings provided critical insights into how intensive aquaculture disrupts intestinal integrity and inhibits growth in fish, offering a valuable reference for future research aimed at enhancing stress resistance in fish under intensive aquaculture conditions.

4.
Sci Rep ; 14(1): 23167, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369044

RESUMO

This study aims to investigate the responses of shield tunnel structures subjected to disturbances caused by bilateral pit excavation, and it systematically reveals for the first time the impact mechanism of bilateral pit excavation on the distribution of perimeter pressure and deformation patterns of shield tunnels. Using a bilateral pit excavation project in Nanjing as a case study, this research establishes methods for calculating longitudinal displacement and circumferential pressure of tunnels under bilateral pit excavation conditions, employing the image source method for analysis. A refined three-ring segment model is developed, and the load structure method is used to analyze the impact of deep foundation excavation on the tunnel located between the two excavation sites. The results indicate that, compared to unilateral excavation, bilateral excavation significantly increases the perimeter pressure at the top and bottom of the tunnel, with a smaller increase in pressure at the arch waist. The deformation pattern is characterized by contraction at the top and bottom and expansion at the waist, forming a transverse elliptical deformation. The maximum vertical convergence values of the middle segment ring are 25.00 mm at the top and 25.88 mm at the bottom, with a vertical absolute convergence value of 44.5 mm and a convergence ratio (ΔDt/Dt) of 0.72%. As the foundation coefficient increases, the perimeter pressure at the top and bottom of the tunnel also increases. When the tunnel is closer to the foundation pits (Sp decreases), the perimeter pressure at the bottom of the tunnel increases. Conversely, as the distance between the two foundation pits (S) increases, the impact of excavation on the tunnel shifts from the upper part to the lower part, resulting in decreased upper perimeter pressure and increased lower perimeter pressure. The research findings provide important references for similar engineering projects.

5.
Ital J Pediatr ; 50(1): 197, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334431

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) has been reported to be associated with the children's neurodevelopment, who may be exposed to tobacco smoke simultaneously. The evidence about joint effect of DHA intake and tobacco smoke exposure on children and adolescents' learning disabilities (LD) was limited. The objective of this study was to assess the joint effect of DHA intake and tobacco smoke exposure on children and adolescents' LD. METHODS: A cross-sectional analysis of the NHANES 1999-2004 was performed. Children and adolescents aged 6-15 years old were included. The outcome was diagnosed by parental report of ever health professionals or school representative-identified LD. Dietary DHA intake data were obtained by food frequency questionnaire and tobacco smoke exposure levels were evaluated by serum cotinine levels. Weighted univariable and multivariate logistic regression analyses were conducted to determine the joint effect of DHA intake and tobacco smoke exposure on LD in children and adolescents, with odds ratios (ORs) and 95% confidence intervals (CIs). This joint association was further assessed after stratification by age, gender, body mass index, the history of attention deficit disorder and seen mental health professional. RESULTS: We identified 5,247 children and adolescents in present study, of whom 593 (11.30%) had LD. After adjusting covariates, we observed children and adolescents with DHA intake (OR = 0.76, 95%CI: 0.61-0.96) was related to lower incidence of LD; children who exposure to tobacco smoke was related to higher incidence of LD (OR = 1.54, 95%CI: 1.07-2.23); children and adolescents who exposure to tobacco smoke and without DHA intake were related to highest odds of LD (OR = 2.08, 95%CI: 1.37-3.17, P for trend = 0.042), that was, DHA and tobacco smoke exposure may have a joint effect on the odds of LD in children and adolescents. Subgroup analyses suggested this joint effect was robust especially among children and adolescents with normal & underweight BMI and without the history of attention deficit disorder and seen mental health professional. CONCLUSION: Increasing the DHA intake and reducing tobacco smoke exposure may have a potential role in the prevention of LD in children and adolescents. This joint effect warrants further investigation by large-scale prospective study.


Assuntos
Ácidos Docosa-Hexaenoicos , Deficiências da Aprendizagem , Inquéritos Nutricionais , Poluição por Fumaça de Tabaco , Humanos , Adolescente , Criança , Estudos Transversais , Feminino , Masculino , Poluição por Fumaça de Tabaco/efeitos adversos , Deficiências da Aprendizagem/epidemiologia , Deficiências da Aprendizagem/etiologia , Estados Unidos/epidemiologia
6.
Adv Healthc Mater ; : e2400364, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221662

RESUMO

Central nervous system (CNS) injuries and neurodegenerative diseases have markedly poor prognoses and can result in permanent dysfunction due to the general inability of CNS neurons to regenerate. Differentiation of transplanted stem cells has emerged as a therapeutic avenue to regenerate tissue architecture in damaged areas. Electrical stimulation is a promising approach for directing the differentiation outcomes and pattern of outgrowth of transplanted stem cells, however traditional inorganic bio-electrodes can induce adverse effects such as inflammation. This study demonstrates the implementation of two organic thin films, a polymer/reduced graphene oxide nanocomposite (P(rGO)) and PEDOT:PSS, that have favorable properties for implementation as conductive materials for electrical stimulation, as well as an inorganic indium tin oxide (ITO) conductive film. Transcriptomic analysis reveals that electrical stimulation improves neuronal differentiation of SH-SY5Y cells on all three films, with the greatest effect for P(rGO). Unique material- and electrical stimuli-mediated effects are observed, associated with differentiation, cell-substrate adhesion, and translation. The work demonstrates that P(rGO) and PEDOT:PSS are highly promising organic materials for the development of biocompatible, conductive scaffolds that will enhance electrically-aided stem cell therapeutics for CNS injuries and neurodegenerative diseases.

7.
Small Methods ; : e2401138, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246276

RESUMO

The structural tailoring of Pt-based catalysts into 1D nanowires for oxygen reduction reactions (ORR) has been a focus of research. Mo(CO)6 is commonly used as a morphological modifier to form nanowires, but it is found that it inevitably leads to Mo doping. This doping introduces unique electrochemical signals not seen in other Pt-based catalysts, which can directly reflect the stability of the catalyst. Through experiments, it is demonstrated that Mo doping is detrimental to ORR performance, and theoretical calculations have shown that Mo sites that are inherently inactive also poison the ORR activity of the surrounding Pt. Therefore, a novel gas-assisted technique is proposed to replace Mo(CO)6 with CO, which forms ultrafine nanowires with an order of magnitude increase in length, ruling out the effect of Mo. The catalyst performs at 1.24 A mgPt -1, 7.45 times greater than Pt/C, demonstrating significant ORR mass activity, and a substantial improvement in stability. The proton exchange membrane fuel cell using this catalyst provides a higher power density (0.7 W cm-2). This study presents a new method for the preparation of ultra-long nanowires, which opens up new avenues for future practical applications of low-Pt catalysts in PEMFC.

8.
Mar Life Sci Technol ; 6(3): 562-575, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39219678

RESUMO

Phosphorus concentration on the surface of seawater varies greatly with different environments, especially in coastal. The molecular mechanism by which cyanobacteria adapt to fluctuating phosphorus bioavailability is still unclear. In this study, transcriptomes and gene knockouts were used to investigate the adaptive molecular mechanism of a model coastal cyanobacterium Synechococcus sp. PCC 7002 during periods of phosphorus starvation and phosphorus recovery (adding sufficient phosphorus after phosphorus starvation). The findings indicated that phosphorus deficiency affected the photosynthesis, ribosome synthesis, and bacterial motility pathways, which recommenced after phosphorus was resupplied. Even more, most of the metabolic pathways of cyanobacteria were enhanced after phosphorus recovery compared to the control which was kept in continuous phosphorus replete conditions. Based on transcriptome, 54 genes potentially related to phosphorus-deficiency adaptation were selected and knocked out individually or in combination. It was found that five mutants showed weak growth phenotype under phosphorus deficiency, indicating the importance of the genes (A0076, A0549-50, A1094, A1320, A1895) in the adaptation of phosphorus deficiency. Three mutants were found to grow better than the wild type under phosphorus deficiency, suggesting that the products of these genes (A0079, A0340, A2284-86) might influence the adaptation to phosphorus deficiency. Bioinformatics analysis revealed that cyanobacteria exposed to highly fluctuating phosphorus concentrations have more sophisticated phosphorus acquisition strategies. These results elucidated that Synechococcus sp. PCC 7002 have variable phosphorus response mechanisms to adapt to fluctuating phosphorus concentration, providing a novel perspective of how cyanobacteria may respond to the complex and dynamic environments. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00244-y.

9.
Adv Mater ; : e2409910, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258364

RESUMO

Scalable fiber lithium-ion batteries (FLIBs) have garnered significant attention due to huge potential applications in wearable technology. However, their widespread applications have been limited by inadequate cycle and calendar life, primarily due to the high permeability of the encapsulation layer to water vapor in ambient air. To address this challenge, an ultra-high barrier composite tube is developed by blending polytrifluorochloroethylene (PCTFE) with organically modified montmorillonite (OMMT) for the continuous packaging of FLIBs. Due to the high crystallinity (≈40.21%) and small free volume (103.443 Å3), the PCTFE tube exhibited a low water vapor transmission rate (WVTR) of 0.123 mg day-1 pkg-1. Furthermore, through the melt extrusion, OMMT with its plate-like morphology are fully exfoliated and dispersed within the PCTFE matrix. This created more complex pathways for water, increasing the diffusion path length and thereby reducing WVTR to 0.006 mg day-1 pkg-1. This innovation enabled an ultra-long calendar life of 200 days and cycle life of 870 cycles for FLIBs, with over 80% capacity retention in ambient air. Additionally, 2%OMMT-PCTFE-FLIBs exhibited excellent flexibility, retaining an impressive 85.31% capacity after 10 000 bending cycles. This research presents a simple yet effective approach to enhance the lifetime and practicality of FLIBs through building a high-performance polymer-based encapsulation layer.

10.
Chem Sci ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39246363

RESUMO

Antisense oligonucleotides (ASOs) are a well-established therapeutic modality based on RNA interference, but low cellular uptake, limited ability to direct ASO trafficking, and a range of intracellular barriers to successful activity compromise both gene silencing outcomes and clinical translations. Herein, we demonstrate that polymers can increase ASO internalisation via intracellular trafficking pathways that are distinct from lipid-based delivery reagents. For the first time, we spatially define internalisation and dissociation stages in the polymer-mediated cytosolic delivery of ASOs using Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS), which enables visualisation of ASO localisation at the organelle level. We find that polymer-ASO complexes are imported into cells, from which free ASO enters the cytosol following complex dissociation. This information enables a better understanding of the intracellular trafficking pathways of nucleic acid therapeutics and may be exploited for therapeutic delivery to enhance the effectiveness of nucleic acid therapeutics in the future.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39212508

RESUMO

Context: The neutrophil to lymphocyte ratio (NLR) or platelet to lymphocyte ratio (PLR) is an inflammation marker of acute ischemic stroke, but the predictive value of NLR and PLR before and after thrombolysis for short-term prognosis in acute ischemic stroke patients after thrombolysis remains largely obscure. This study attempts to clarify the predictive value of NLR and PLR before and after thrombolysis for short-term prognosis in acute ischemic stroke patients after thrombolysis. Design: A retrospective study was carried out in the Affiliated Hospital of Hangzhou Normal University involving 120 patients visiting the neurology department of our hospital from May 2019 to October 2022 and meeting the selection criteria. The participants were assigned to the good prognosis group and the poor prognosis group based on the modified Rankin scale score. Laboratory data collected include NLR and PLR at admission as well as NLR and PLR collected from venous blood within 24 h after thrombolysis. Results: Age, hyperlipidemia, atrial fibrillation, rheumatic heart disease, and National Institutes of Health Stroke Scale (NIHSS) scores after thrombolysis depicted statistical significance between both groups (P < .05). Hyperlipidemia, atrial fibrillation, and NIHSS scores before thrombolysis were independent risk elements for adverse prognosis (P < .05). NLR and PLR before and after thrombolysis in the poor prognosis group depicted an elevation relative to that in the good prognosis group (P < .05). The area under the curve of NLR or PLR predicting adverse prognosis after thrombolysis depicted an elevation relative to that before thrombolysis (P < .05). Conclusion: The predictive value of NLR and PLR post-thrombolysis for short-term prognosis in acute ischemic stroke patients depicts an elevation relative to pre-thrombolysis; our study provides effective predictive indicators for short-term prognosis in acute ischemic stroke patients.

12.
Commun Biol ; 7(1): 994, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143188

RESUMO

Cyanobacteria are important primary producers, contributing to 25% of the global carbon fixation through photosynthesis. They serve as model organisms to study the photosynthesis, and are important cell factories for synthetic biology. To enable efficient genetic dissection and metabolic engineering in cyanobacteria, effective and accurate genetic manipulation tools are required. However, genetic manipulation in cyanobacteria by the conventional homologous recombination-based method and the recently developed CRISPR-Cas gene editing system require complicated cloning steps, especially during multi-site editing and single base mutation. This restricts the extensive research on cyanobacteria and reduces its application potential. In this study, a highly efficient and convenient cytosine base editing system was developed which allows rapid and precise C → T point mutation and gene inactivation in the genomes of Synechocystis and Anabaena. This base editing system also enables efficient multiplex editing and can be easily cured after editing by sucrose counter-selection. This work will expand the knowledge base regarding the engineering of cyanobacteria. The findings of this study will encourage the biotechnological applications of cyanobacteria.


Assuntos
Anabaena , Sistemas CRISPR-Cas , Edição de Genes , Synechocystis , Edição de Genes/métodos , Synechocystis/genética , Anabaena/genética , Anabaena/metabolismo , Genoma Bacteriano , Cianobactérias/genética , Cianobactérias/metabolismo
13.
BMC Cancer ; 24(1): 1062, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198804

RESUMO

BACKGROUND: Intestinal obstruction represents a severe intestinal disease associated with higher mortality rates. However, the determinants of mortality in patients with intestinal obstruction remain inadequately understood. This study sought to elucidate the potential risk factors associated with mortality in the context of intestinal obstruction during the COVID-19 pandemic. METHODS: A retrospective analysis was performed on a cohort of 227 patients diagnosed with intestinal obstruction at the First Hospital of Hebei Medical University, spanning the period from September 7, 2022, to January 7, 2023. The primary endpoint of the study was mortality within four weeks following discharge. Univariate and multivariable logistic regression models were utilized to evaluate the risk factors associated with mortality outcomes. RESULTS: A cohort of 227 patients diagnosed with intestinal obstruction (median age, 59.02 years [IQR, 48.95-70.85 years]) was included in our study. Malignant bowel obstruction (MBO) and COVID-19 were identified as independent risk factors for mortality among these patients. Notably, the mortality rate increased significantly to 38.46% when MBO was concomitant with COVID-19. Furthermore, postoperative pulmonary complications (PPC) (OR, 54.21 [death]; 95% CI, 3.17-926.31), gastric cancer (OR, 9.71 [death]; 95% CI, 1.38-68.18), VTE (Caprini Score ≥ 5) (OR, 7.64 [death]; 95% CI, 1.37-42.51), and COVID-19 (OR, 5.72 [death]; 95% CI, 1.01-32.29) were all determined to be independent risk factors for postoperative mortality. Additionally, gastric cancer could have emerged as one of the most severe risk factors for mortality in individuals with intestinal obstruction within the cohort of cancer patients, of which gastric cancer exhibited higher mortality rates compared to individuals with other forms of cancer. CONCLUSION: The study identifies MBO, gastric cancer, COVID-19, PPC, and VTE as potential risk factors for mortality in cases of intestinal obstruction. These findings highlight the necessity for continuous monitoring of indicators related to these mortality risk factors and their associated complications, thereby offering valuable insights for the management and treatment of intestinal obstruction.


Assuntos
COVID-19 , Obstrução Intestinal , Humanos , Obstrução Intestinal/mortalidade , Obstrução Intestinal/etiologia , Masculino , Pessoa de Meia-Idade , Feminino , COVID-19/complicações , COVID-19/mortalidade , Idoso , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Complicações Pós-Operatórias/mortalidade , Complicações Pós-Operatórias/epidemiologia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/complicações
14.
Sci Adv ; 10(27): eadl6428, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959319

RESUMO

Cyanobacteria use a series of adaptation strategies and a complicated regulatory network to maintain intracellular iron (Fe) homeostasis. Here, a global activator named IutR has been identified through three-dimensional chromosome organization and transcriptome analysis in a model cyanobacterium Synechocystis sp. PCC 6803. Inactivation of all three homologous IutR-encoding genes resulted in an impaired tolerance of Synechocystis to Fe deficiency and loss of the responses of Fe uptake-related genes to Fe-deplete conditions. Protein-promoter interaction assays confirmed the direct binding of IutR with the promoters of genes related to Fe uptake, and chromatin immunoprecipitation sequencing analysis further revealed that in addition to Fe uptake, IutR could regulate many other physiological processes involved in intracellular Fe homeostasis. These results proved that IutR is an important transcriptional activator, which is essential for cyanobacteria to induce Fe-deficiency response genes. This study provides in-depth insights into the complicated Fe-deficient signaling network and the molecular mechanism of cyanobacteria adaptation to Fe-deficient environments.


Assuntos
Regulação Bacteriana da Expressão Gênica , Homeostase , Ferro , Regiões Promotoras Genéticas , Synechocystis , Ferro/metabolismo , Synechocystis/metabolismo , Synechocystis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/metabolismo , Cianobactérias/genética , Perfilação da Expressão Gênica
15.
J Am Chem Soc ; 146(29): 20221-20229, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985464

RESUMO

Nanoscale secondary ion mass spectrometry (NanoSIMS) makes it possible to visualize elements and isotopes in a wide range of samples at a high resolution. However, the fidelity and quality of NanoSIMS images often suffer from distortions because of a requirement to acquire and integrate multiple image frames. We developed an optical flow-based algorithm tool, NanoSIMS Stabilizer, for all-channel postacquisition registration of images. The NanoSIMS Stabilizer effectively deals with the distortions and artifacts, resulting in a high-resolution visualization of isotope and element distribution. It is open source with an easy-to-use ImageJ plugin and is accompanied by a Python version with GPU acceleration.

16.
Ecol Evol ; 14(6): e11550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932959

RESUMO

Northeast China, rich in natural resources and diverse biodiversity, boasts a unique habitat for threatened bird species due to its remote location and perennial cold climate. An analysis assessed the adaptability of these species using data on their geographic distribution and functional traits collected through database queries. The results revealed that threatened bird species share similar functional traits and a stronger phylogenetic signal (Blomberg mean K = 0.39) compared to common species. The Biomod2 model analyzed potentially suitable ranges and environmental drivers under current and future climate scenarios, showing a pattern of larger suitable areas in southern regions and smaller suitable areas in the north. The most critically threatened species faced greater geographical constraints (0.989), with mean annual temperature being a key influence. Altitude and water system distribution were also key factors impacting the distribution of other threatened bird species. Simulated projections under different climate scenarios (RCP 45 and 85) indicated varying degrees of expansion in the suitable range for these species. This research sheds light on the functional traits and distribution of threatened bird species in Northeast China, providing a scientific foundation for future conservation and management efforts.

17.
Int J Cosmet Sci ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922913

RESUMO

OBJECTIVE: The objective of this work was to understand how triglyceride plant oils can deliver strength and softness benefits to hair by their penetration. These plant oils are complex mixtures of TAGs, so the initial studies performed were with pure TAGs and then these data compared to plant oils and their measured TAG compositions. METHODS: LC-MS was used to identify the di and triglycerides in coconut oil, Camellia oleifera oil and safflower seed oil. Penetration of these plant oils and pure individual triglycerides was measured by a differential extraction method. Cross-sections of oils treated with 13C-labelled triolein were studied by NanoSIMS to visualize location of triglyceride inside hair. Fatigue strength was measured using constant stress to generate a survival distribution. Models of the lipid-rich cell membrane complex (CMC) were created with the equimolar ratio of 18-methyl-eicosanoic acid (MEAS), palmitic acid (C16:0) and oleic acid (C18:1). RESULTS: Penetration of the individual pure TAGs was confirmed for all chain lengths and degree of unsaturation tested with higher penetration for shorter chain lengths and unsaturated fatty acids. Detailed compositional analysis of selected plant oils showed a wide variety of TAGs and penetration was also demonstrated for these oils. NanoSIMS and modelling confirmed these TAGs are penetrating the lipid-rich CMC of hair and are interacting with the fatty acids that make up the CMC. All plant oils delivered a fatigue strength improvement by penetration into the CMC and it is proposed that these oils prevent formation and/or propagation of flaws in the CMC network that leads to breakage. CONCLUSIONS: Many plant oils with a wide range of triglyceride compositions can penetrate into hair and NanoSIMS data confirmed these oils partition into the lipid-rich cell membrane complex. Penetration studies of individual TAGs shown to be present in these oils confirmed TAGs of varying chain length can penetrate and there is a correlation between increased penetration efficacy and shorter chain lengths and presence of unsaturation in the fatty acid chains. All the oils studied delivered single fibre fatigue strength benefits.


OBJECTIF: L'objectif de ce travail était de comprendre comment les huiles végétales à base de triglycérides peuvent apporter aux cheveux des bienfaits en termes de résistance et de douceur grâce à leur pénétration. Ces huiles végétales sont des mélanges complexes de TAG, donc les études réalisées initiales ont porté sur des TAG purs et ces données ont été comparées à des huiles végétales et leurs compositions en TAG mesurées. MÉTHODES: La LC­MS a été utilisée pour identifier les di­ et triglycérides dans l'huile de noix de coco, l'huile de Camellia oleifera et l'huile de graines de carthame. La pénétration de ces huiles végétales et des triglycérides individuels purs a été mesurée par une méthode d'extraction différentielle. Des coupes transversales d'huiles traitées avec de la trioléine marquée au C13 ont été étudiées par NanoSIMS pour visualiser l'emplacement des triglycérides à l'intérieur des cheveux. La résistance à la fatigue a été mesurée à l'aide d'une sollicitation constante pour générer une distribution de la survie. Des modèles du complexe de membrane cellulaire riche en lipides (CMC) ont été créés avec le rapport équimolaire en acide 18­méthyleicosanoïque (MEAS), acide palmitique (C16:0) et acide oléique (C18:1). RÉSULTATS: La pénétration des TAG purs individuels a été confirmée pour toutes les longueurs de chaîne et le degré d'insaturation a été testé avec une pénétration plus élevée pour les chaînes plus courtes et les acides gras insaturés. Une analyse détaillée de la composition de certaines huiles végétales a montré une grande variété de TAG et la pénétration a également été démontrée pour ces huiles. Le NanoSIMS et la modélisation ont confirmé que ces TAG pénètrent dans la CMC riche en lipides des cheveux et interagissent avec les acides gras qui composent le CMC. Toutes les huiles végétales ont produit une amélioration de la résistance à la fatigue par pénétration dans le CMC et il est proposé que ces huiles préviennent la formation et/ou la propagation de défauts dans le réseau CMC qui entraînent une rupture. CONCLUSIONS: De nombreuses huiles végétales avec un large éventail de compositions de triglycérides peuvent pénétrer dans les cheveux et les données du NanoSIMS ont confirmé que ces huiles se divisent en complexe de membrane cellulaire riche en lipides. Les études de pénétration des TAG individuels qui se sont avérés présents dans ces huiles ont confirmé que les TAG de longueur de chaîne variable peuvent pénétrer et il existe une corrélation entre l'augmentation de l'efficacité de pénétration et les longueurs de chaîne plus courtes et la présence d'une insaturation dans les chaînes d'acides gras. Toutes les huiles étudiées ont montré des bienfaits en matière de résistance à la fatigue pour une seule fibre.

18.
Anal Chim Acta ; 1315: 342797, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879209

RESUMO

BACKGROUND: Harmful algal blooms (HABs), caused by the rapid proliferation or aggregation of microorganisms, are catastrophic for the environment. The Prymnesium parvum is a haptophyte algal species that is found worldwide and is responsible for extensive blooms and death of larval amphibians and bivalves, causing serious negative impacts on the ecological environment. For the prevention and management of environmental pollution, it is crucial to explore and develop early detection strategies for HABs on-site using simple methods. The major challenge related to early detection is the accurate and sensitive detection of algae present in low abundance. RESULTS: Herein, recombinase polymerase amplification (RPA) was combined with clustered regularly interspaced short palindromic repeats and Cas12a protein (CRISPR-LbaCas12a) systems, and the lateral flow dipstick (LFD) was used for the first time for early detection of P. parvum. The internal transcribed spacer (ITS) of P. parvum was selected as the target sequence, and the concentration of single-strand DNA reporters, buffer liquid system, reaction time, and amount of gold particles were optimized. The RPA-CRISPR-LbaCas12a-LFD approach demonstrated highly specificity during experimental testing, with no cross-reaction against different microalgae used as controls. In addition, the lowest detection limit was 10,000 times better than the lowest detection limit of the standalone RPA approach. The feasibility and robustness of this approach were further verified by using the different environmental samples. It also observed that P. parvum are widely distributed in Chinese Sea, but the cell density of P. parvum is relatively low (<0.1 cells/mL). SIGNIFICANCE: The developed approach has an excellent specificity and offers 10,000 times better sensitivity than the standalone RPA approach. These advantages make this approach suitable for early warning detection and prevention of HAB events in environmental water. Also, the outcomes of this study could promote a shift from traditional laboratory-based detection to on-site monitoring, facilitating early warning against HABs.


Assuntos
Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/metabolismo , Proliferação Nociva de Algas , Ouro/química , Proteínas Associadas a CRISPR/genética , Endodesoxirribonucleases/genética , Proteínas de Bactérias/genética
19.
Nat Commun ; 15(1): 4677, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824146

RESUMO

Electron microscopy (EM) revolutionized the way to visualize cellular ultrastructure. Volume EM (vEM) has further broadened its three-dimensional nanoscale imaging capacity. However, intrinsic trade-offs between imaging speed and quality of EM restrict the attainable imaging area and volume. Isotropic imaging with vEM for large biological volumes remains unachievable. Here, we developed EMDiffuse, a suite of algorithms designed to enhance EM and vEM capabilities, leveraging the cutting-edge image generation diffusion model. EMDiffuse generates realistic predictions with high resolution ultrastructural details and exhibits robust transferability by taking only one pair of images of 3 megapixels to fine-tune in denoising and super-resolution tasks. EMDiffuse also demonstrated proficiency in the isotropic vEM reconstruction task, generating isotropic volume even in the absence of isotropic training data. We demonstrated the robustness of EMDiffuse by generating isotropic volumes from seven public datasets obtained from different vEM techniques and instruments. The generated isotropic volume enables accurate three-dimensional nanoscale ultrastructure analysis. EMDiffuse also features self-assessment functionalities on predictions' reliability. We envision EMDiffuse to pave the way for investigations of the intricate subcellular nanoscale ultrastructure within large volumes of biological systems.

20.
ISME Commun ; 4(1): ycae072, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38873030

RESUMO

As diazotrophic cyanobacteria of tremendous biomass, Trichodesmium continuously provide a nitrogen source for carbon-fixing cyanobacteria and drive the generation of primary productivity in marine environments. However, ocean iron deficiencies limit growth and metabolism of Trichodesmium. Recent studies have shown the co-occurrence of Trichodesmium and siderophore-producing Synechococcus in iron-deficient oceans, but whether siderophores secreted by Synechococcus can be used by Trichodesmium to adapt to iron deficiency is not clear. We constructed a mutant Synechococcus strain unable to produce siderophores to explore this issue. Synechococcus filtrates with or without siderophores were added into a Trichodesmium microbial consortium consisting of Trichodesmium erythraeum IMS 101 as the dominant microbe with chronic iron deficiency. By analyzing the physiological phenotype, metagenome, and metatranscriptome, we investigated the interactions between the nitrogen-fixing cyanobacterium Tricodesmium and siderophore-producing cyanobacterium Synechococcus under conditions of iron deficiency. The results indicated that siderophores secreted by Synechococcus are likely to chelate with free iron in the culture medium of the Trichodesmium consortium, reducing the concentration of bioavailable iron and posing greater challenges to the absorption of iron by Trichodesmium. These findings revealed the characteristics of iron-competitive utilization between diazotrophic cyanobacteria and siderophore-producing cyanobacteria, as well as potential interactions, and provide a scientific basis for understanding the regulatory effects of nutrient limitation on marine primary productivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA