Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sci Total Environ ; 914: 169890, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190909

RESUMO

Excitation-emission matrix (EEM) fluorescence spectroscopy is a widely-used method for characterizing the chemical components of brown carbon (BrC). However, the molecular basics and formation mechanisms of chromophores, which are decomposed by parallel factor (PARAFAC) analysis, are not yet fully understood. In this study, we characterized the water-soluble organic carbon (WSOC) in aerosols collected from Karachi, Pakistan, using EEM spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We identified three PARAFAC components, including two humic-like components (C1 and C2) and one phenolic-like species (C3). We determined the molecular families associated with each component by performing Spearman correlation analysis between FT-ICR MS peaks and PARAFAC component intensities. We found that the C1 and C2 components were associated with nitrogen-enriched compounds, where C2 with the longest emission wavelength exhibited a higher level of aromaticity, N content, and oxygenation than C1. The C3 associated formulas have fewer nitrogen-containing species, a lower unsaturation degree, and a lower oxidation state. An oxidation pathway was identified as an important process in the formation of C1 and C2 components at the molecular level, particularly for the assigned CHON compounds associated with the gas-phase oxidation process, despite their diverse precursor types. Numerous C2 formulas were found in the "potential BrC" region and overlapped with the BrC-associated formulas. It can be inferred that the compounds that fluoresce C2 contributed considerably to the light absorption of BrC. These findings are essential for future studies utilizing the EEM-PARAFAC method to explore the sources, processes, and compositions of atmospheric BrC.

2.
Environ Sci Technol ; 57(51): 21593-21604, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-37955649

RESUMO

Decades of research have established the toxicity of soot particles resulting from incomplete combustion. However, the unique chemical compounds responsible for adverse health effects have remained uncertain. This study utilized mass spectrometry to analyze the chemical composition of extracted soot organics at three oxidation states, aiming to establish quantitative relationships between potentially toxic chemicals and their impact on human alveolar basal epithelial cells (A549) through metabolomics-based evaluations. Targeted analysis using MS/MS indicated that particles with a medium oxidation state contained the highest total abundance of compounds, particularly oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) composed of fused benzene rings and unsaturated carbonyls, which may cause oxidative stress, characterized by the upregulation of three specific metabolites. Further investigation focused on three specific OPAH standards: 1,4-naphthoquinone, 9-fluorenone, and anthranone. Pathway analysis indicated that exposure to these compounds affected transcriptional functions, the tricarboxylic acid cycle, cell proliferation, and the oxidative stress response. Biodiesel combustion emissions had higher concentrations of PAHs, OPAHs, and nitrogen-containing PAHs (NPAHs) compared with other fuels. Quinones and 9,10-anthraquinone were identified as the dominant compounds within the OPAH category. This knowledge enhances our understanding of the compounds contributing to adverse health effects observed in epidemiological studies and highlights the role of aerosol composition in toxicity.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Humanos , Compostos Policíclicos/análise , Fuligem/análise , Fuligem/química , Fuligem/toxicidade , Espectrometria de Massas em Tandem , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pulmão , Oxigênio/análise , Metaboloma , Poluentes Atmosféricos/análise , Emissões de Veículos/análise
3.
Environ Sci Technol ; 57(51): 21570-21580, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-37989488

RESUMO

The limited characterization and detection capacity of unknown compounds hinder our understanding of the molecular composition of toxic compounds in PM2.5. The present study applied Fourier transform ion cyclotron resonance mass spectrometry coupled with negative and positive electrospray ionization sources (ESI-/ESI+ FT-ICR-MS) to probe the molecular characteristics and dynamic formation processes of the effective proinflammatory components in organic aerosols (OAs) of PM2.5 in Guangzhou for one year. We detected abundant proinflammatory molecules in OAs, mainly classified as CHON compounds (compounds composed of C, H, O, and N atoms) in elemental and nitroaromatic compounds (NACs) in structures. From the perspective of the formation process, we discovered that these proinflammatory molecules, especially toxic NACs, were largely driven by secondary nitrate formation and biomass burning (in emission source), as well as SO2 (in atmospheric evolution). In addition, our results indicated that the secondary processes had replaced the primary emission as the main contributing source of the toxic proinflammatory compounds in OAs. This study highlights the importance of community measures to control the production of nitroaromatic compounds derived from secondary nitrate formation and biomass burning in urban areas.


Assuntos
Nitratos , Compostos Orgânicos , Nitratos/análise , Biomassa , Espectrometria de Massas , Compostos Orgânicos/análise , Material Particulado/análise , Aerossóis/análise , Bioensaio
4.
Environ Sci Technol ; 57(43): 16500-16511, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844026

RESUMO

Nitrogen-containing organic compounds (NOCs), a type of important reactive-nitrogen species, are abundant in organic aerosols in haze events observed in Northern China. However, due to the complex nature of NOCs, the sources, formation, and influencing factors are still ambiguous. Here, the molecular composition of organic matters (OMs) in hourly PM2.5 samples collected during a haze event in Northern China was characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We found that CHON compounds (formulas containing C, H, O, and N atoms) dominated the OM fractions during the haze and showed high chemodiversity and transformability. Relying on the newly developed revised-workflow and oxidation-hydrolyzation knowledge for CHON compounds, 64% of the major aromatic CHON compounds (>80%) could be derived from the oxidization or hydrolyzation processes. Results from FT-ICR MS data analysis further showed that the aerosol liquid water (ALW)-involved aqueous-phase reactions are important for the molecular distribution of aromatic-CHON compounds besides the coal combustion, and the ALW-involved aromatic-CHON compound formation during daytime and nighttime was different. Our results improve the understanding of molecular composition, sources, and potential formation of CHON compounds, which can help to advance the understanding for the formation, evolution, and control of haze.


Assuntos
Poluentes Atmosféricos , Compostos de Nitrogênio , Compostos de Nitrogênio/análise , Água , Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Nitrogênio/análise , China , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
5.
Nat Commun ; 14(1): 6444, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833278

RESUMO

Emission factors and inventories of black carbon (BC) aerosols are crucial for estimating their adverse atmospheric effect. However, it is imperative to separate BC emissions into char and soot subgroups due to their significantly different physicochemical properties and potential effects. Here, we present a substantial dataset of char and soot emission factors derived from field and laboratory measurements. Based on the latest results of the char-to-soot ratio, we further reconstructed the emission inventories of char and soot for the years 1960-2017 in China. Our findings indicate that char dominates annual BC emissions and its huge historical reduction, which can be attributable to the rapid changes in energy structure, combustion technology and emission standards in recent decades. Our results suggest that further BC emission reductions in both China and the world should focus on char, which mainly derives from lower-temperature combustion and is easier to decrease compared to soot.

6.
Molecules ; 28(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513478

RESUMO

Following the successful experimental synthesis of single-layer metallic 1T-TaS2 and semiconducting 2H-MoS2, 2H-WSe2, we perform a first-principles study to investigate the electronic and interfacial features of metal/semiconductor 1T-TaS2/2H-MoS2 and 1T-TaS2/2H-WSe2 van der Waals heterostructures (vdWHs) contact. We show that 1T-TaS2/2H-MoS2 and 1T-TaS2/2H-WSe2 form n-type Schottky contact (n-ShC type) and p-type Schottky contact (p-ShC type) with ultralow Schottky barrier height (SBH), respectively. This indicates that 1T-TaS2 can be considered as an effective metal contact with high charge injection efficiency for 2H-MoS2, 2H-WSe2 semiconductors. In addition, the electronic structure and interfacial properties of 1T-TaS2/2H-MoS2 and 1T-TaS2/2H-WSe2 van der Waals heterostructures can be transformed from n-type to p-type Schottky contact through the effect of layer spacing and the electric field. At the same time, the transition from Schottky contact to Ohmic contact can also occur by relying on the electric field and different interlayer spacing. Our results may provide a new approach for photoelectric application design based on metal/semiconductor 1T-TaS2/2H-MoS2 and 1T-TaS2/2H-WSe2 van der Waals heterostructures.

7.
J Phys Condens Matter ; 35(44)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463597

RESUMO

Two-dimensional MoSi2N4is a member of the emerging 2D MA2N4family, which has been synthesized in experiments, recently. Herein, we conduct a first-principles investigation to study more about the atomic and electronic structures of V2C/MoSi2N4(1T-phase) van der Waals heterostructures (vdWHs) and interlayer distance and an external perpendicular electric field change their tunable electronic structures. We demonstrate that the V2C/MoSi2N4vdWHs contact forms n-type Schottky contact with an ultralow Schottky barrier height of 0.17 eV, which is beneficial to enhance the charge injection efficiency. In addition, the electronic structure and interfacial properties of V2C/MoSi2N4vdWHs can be transformed from n-type to p-type ShC through the effect of layer spacing and electric field. At the same time, the transition from ShC to OhC can also occur by relying on the electric field and different interlayer spacing. Our findings could give a novel approach for developing optoelectronic applications based on V2C/MoSi2N4vdW heterostructures.

8.
Sci Total Environ ; 859(Pt 2): 160359, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36423835

RESUMO

Biomass burning is an important source of polycyclic aromatic hydrocarbons (PAHs) and elemental carbon (EC), but the formation mechanisms are still unclear. Cellulose, hemicellulose, and lignin are the three major components of biomass. In this study, the three-components extracted from three typical biomass raw materials were used for laboratory combustion experiments, to investigate the differences in the emission factors and chemical compositions of PAHs and EC. The average emission factors of the 16 kinds of PAHs were showing as lignin (135 ± 180 mg/kg) > cellulose (97.8 ± 124 mg/kg) > hemicellulose (48.9 ± 65.2 mg/kg), and the average emission factors of EC presented in the descending order of cellulose (1.65 ± 3.02 g/kg), lignin (1.30 ± 1.04 g/kg), and hemicellulose (0.450 ± 0.480 g/kg), respectively. The proportion of naphthalene emitted from cellulose and hemicellulose combustion is higher, while fluoranthene and pyrene accounted significantly higher proportion for lignin. Moreover, the influence of ignition temperature and oxygen content on the emission characteristics of PAHs and EC were also discussed. The influence of ignition temperature on the emission of EC and PAHs is more significant compared to oxygen content, because it obviously promoted the PAHs and EC formations through resonance-stabilized hydrocarbon-radical chain reaction (RSR) pathway. However, correlation analysis combined with cluster analysis showed that the RSR-pathway probably had different effects on PAH growth for the three-components, as the indene-involved RSR-pathway were mainly related to 4-6 ring PAHs for cellulose and lignin (except fluoranthene and pyrene), but 2-4 ring PAHs for hemicellulose. We also found that the fitted results according to the proportion of three-components were significantly higher than the measured values of raw materials for indene, medium-molecular-weight PAHs, and soot-EC. These results presented the different formation pathways for medium-molecular-weight PAHs and the two EC components emitted by biomass combustion, which are worthy of further studies in exploring the generation mechanisms of PAHs and EC.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Lignina , Celulose , Carbono/química , Oxigênio/análise
9.
Environ Int ; 170: 107582, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265357

RESUMO

Field-based sampling can provide more accurate evaluation than MODIS in regional biomass burning (BB) emissions given the limitations of MODIS on unresolved fires. Polyurethane foam-based passive air samplers (PUF-PASs) are a promising tool for collecting atmospheric monosaccharides. Here, we deployed PUF-PASs to monitor monosaccharides and other BB-related biomarkers and presented a dataset of 31 atmospheric BB-related biomarkers in the Indo-China Peninsula (ICP) and Southwest China. The peak concentrations of monosaccharides in the ICP occurred before monsoon season. The highest concentrations were in the eastern Mekong plain, while the lowest were along the eastern coast. BB-related biomarkers displayed elevated concentrations after April, particularly in the monsoon season; however, fewer active fires were recorded by MODIS. This revealed the importance of MODIS unresolved fires (e.g., indoor biofuel combustion, small-scale BB incidents, and charcoal fires) to the regional atmosphere. The PAS derived levoglucosan concentrations indicated that, with the inclusion of MODIS unresolved fires, the estimated top-down emissions of PM (4194-4974 Gg/yr), OC (1234-1719 Gg/yr) and EC (52-384 Gg/yr) would be higher than previous bottom-up estimations in the ICP. Future studies on these MODIS unresolved fires and regional monitoring data of BB are vital for improving the modeling of regional BB emissions.


Assuntos
China
10.
Conserv Physiol ; 10(1): coac040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36937702

RESUMO

Black-necked cranes (Grus nigricollis) are national first-level protected wild animals in China. Artificial breeding has been adopted by many zoos and reserves to achieve ex-situ conservation of black-necked cranes, but the breeding rate of the species in cages is low. This study used non-invasive methods combined with behavioural observations to investigate changes in sex hormones and glucocorticoid metabolites in the droppings of black-necked cranes during the breeding cycle, with the results showing that (i) levels of estradiol and testosterone in black-necked cranes increased significantly when they entered the breeding period, and these levels could be used as an important physiological indicator to effectively monitor the physiological status of females and males during the reproductive period, thus providing a theoretical basis for the timing of semen collection; (ii) the level of progesterone in the mid-reproduction stage was significantly higher than that in other stages in female black-necked cranes after successful mating, and this level could be an effective indicator of the mating status of female black-necked cranes; (iii) droppings' glucocorticoid metabolites in the breeding period showed different dynamics between paired and singly caged black-necked cranes, indicating that the physiological phenomenon of reproduction could result in a certain amount of physiological burden on black-necked cranes. These results provide a theoretical basis for the selection of physiological parameters in the artificial breeding of black-necked cranes.

11.
Environ Sci Technol ; 55(15): 10268-10279, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34286571

RESUMO

The light-absorbing organic aerosol referred to as brown carbon (BrC) affects the global radiative balance. The linkages between its molecular composition and light absorption properties and how environmental factors influence BrC composition are not well understood. In this study, atmospheric dissolved organic matter (ADOM) in 55 aerosol samples from Guangzhou was characterized using Fourier transform ion cyclotron resonance mass spectrometry and light absorption measurements. The abundant components in ADOM were aliphatics and peptide-likes (in structure), or nitrogen- and sulfur-containing compounds (in elemental composition). The light absorption properties of ADOM were positively correlated with the levels of unsaturated and aromatic structures. Particularly, 17 nitrogen-containing species, which are identified by a random forest, characterized the variation of BrC absorption well. Aggregated boosted tree model and nonmetric multidimensional scaling analysis show that the BrC composition was largely driven by meteorological conditions and anthropogenic activities, among which biomass burning (BB) and OH radical were the two important factors. BrC compounds often accumulate with elevated BB emissions and related secondary processes, whereas the photolysis/photooxidation of BrC usually occurs under high solar radiance/•OH concentration. This study first illuminated how environmental factors influence BrC at the molecular level and provided clues for the molecular-level research of BrC in the future.


Assuntos
Poluentes Atmosféricos , Simulação de Dinâmica Molecular , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Compostos Orgânicos , Material Particulado/análise
12.
Sci Total Environ ; 778: 146305, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030351

RESUMO

Understanding the intra-city variation of PM2.5 is important for air quality management and exposure assessment. In this study, to investigate the spatiotemporal variation of PM2.5 in Guangzhou, we developed land use regression (LUR) models using data from 49 routine air quality monitoring stations. The R2, adjust R2 and 10-fold cross validation R2 for the annual PM2.5 LUR model were 0.78, 0.72 and 0.66, respectively, indicating the robustness of the model. In all the LUR models, traffic variables (e.g., length of main road and the distance to nearest ancillary) were the most common variables in the LUR models, suggesting vehicle emission was the most important contributor to PM2.5 and controlling vehicle emissions would be an effective way to reduce PM2.5. The predicted PM2.5 exhibited significant variations with different land uses, with the highest value for impervious surfaces, followed by green land, cropland, forest and water areas. Guangzhou as the third largest city that PM2.5 concentration has achieved CAAQS Grade II guideline in China, it represents a useful case study city to examine the health and economic benefits of further reduction of PM2.5 to the lower concentration ranges. So, the health and economic benefits of reducing PM2.5 in Guangzhou was further estimated using the BenMAP model, based on the annual PM2.5 concentration predicted by the LUR model. The results showed that the avoided all cause mortalities were 992 cases (95% CI: 221-2140) and the corresponding economic benefits were 1478 million CNY (95% CI: 257-2524) (willingness to pay approach) if the annual PM2.5 concentration can be reduced to the annual CAAQS Grade I guideline value of 15 µg/m3. Our results are expected to provide valuable information for further air pollution control strategies in China.

13.
Sci Total Environ ; 778: 146107, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714091

RESUMO

A new method is presented for measuring atmospheric contents and δ34S-SO42- in airborne particulate matter using quartz wool disk passive air samplers (Pas-QW). The ability of Pas-QW samplers to provide time-integrated measurements of atmospheric SO42- was confirmed in a field calibration study. The average sampling rate of SO42- measured was 2.3 ± 0.3 m3/day, and this was not greatly affected by changes in meteorological parameters. The results of simultaneous sampling campaign showed that the average SO42- contents in Pakistan and the Indochina Peninsula (ICP) were relatively lower than that of China. The spatial distribution of SO42- concentrations was largely attributed to the development of the regional economies. The range of δ34S values observed in Pakistan (4.3 ± 1.4‰) and the ICP (4.5 ± 1.2‰) were relatively small, while a large range of δ34S values was observed in China (3.9 ± 2.5‰). The regional distribution of sulfur isotope compositions was significantly affected by coal combustion. A source analysis based on a Bayesian mixing model showed that 80.4 ± 13.1% and 19.6 ± 13.1% of artificial sulfur dioxide (SO2) sources in China could be attributed to coal combustion and oil combustion, respectively. The two sources differed greatly between regions, and the contribution of oil combustion in cities was higher than previously reported data obtained from emission inventories. This study confirmed that the Pas-QW is a promising tool for simultaneously monitoring atmospheric δ34S-SO42- over large regions, and that the results of the isotope models can provide a reference for the compilation of SO2 emission inventories.

14.
Front Oncol ; 10: 1086, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014768

RESUMO

TIM-1 is a critical gene that regulates T-helper cell development. However, little research has revealed the distribution, prognosis, and immune infiltration of TIM-1 in cancers. TCGA, GEO, Oncomine, TIMER, Kaplan-Meier, PrognoScan, GEPIA, TISIDB, and HPA databases were used to analyze TIM-1 in cancers. High TIM-1 expression was observed in bladder, cholangio, head and neck, colorectal, gastric, kidney, liver, lung adenocarcinoma, skin, uterine corpus endometrial, and pancreatic cancers compared to the normal tissues, and immunofluorescence shows that TIM-1 is mainly localized in vesicles. Simultaneously, high TIM-1 expression was closely related with poorer overall survival in gastric, lung adenocarcinoma, and poorer disease-specific survival in gastric cancer in the TCGA cohort, and was validated in the GEO cohort. Moreover, high expression of TIM-1, correlated with clinical relevance of gastric cancer and lung adenocarcinoma, was associated with tumor-infiltrating lymphocytes in lung adenocarcinoma and gastric cancer. Finally, immunohistochemistry showed TIM-1 expression was higher in lung adenocarcinoma and gastric cancer compared to the normal tissues. In summary, we applied integrated bioinformatics approaches to suggest that TIM-1 can be used as a prognostic biomarker in gastric and lung adenocarcinoma, which might provide a novel direction to explore the pathogenesis of gastric and lung adenocarcinoma.

15.
Environ Int ; 144: 106079, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866733

RESUMO

Atmospheric brown carbon (BrC) is an important constituent of light-absorbing organic aerosols with many unclear issues. Here, the light-absorption properties of BrC with different polarity characteristics at a regional site of Pearl River Delta Region during 2016-2017, influenced by sources and molecular compositions, were revealed using radiocarbon analysis and Fourier transform ion cyclotron resonance mass spectrometry. Humic-like substance (HULIS), middle polar (MP), and low polar (LP) carbon fractions constitute 46 ± 17%, 30 ± 7%, and 7 ± 3% of total absorption coefficient from bulk extracts, respectively. Our results show that the absorption proportions of HULIS and MP to the total BrC absorption are higher than their mass proportions to organic carbon mass, indicating that HULIS and MP are the main light-absorbing components in water-soluble and water-insoluble organic carbon fractions, respectively. With decreases in non-fossil HULIS, MP, and LP carbon fractions (66 ± 2%, 52 ± 2%, and 36 ± 3%, respectively), the abundances of unsaturated compounds and mass absorption efficiency at 365 nm of three fractions decreased synchronously. Increases in both non-fossil carbon and levoglucosan in winter imply that the enhanced light-absorption could be attributed to elevated levels of biomass burning organic aerosols (BBOA), which increases the number of light-absorbing nitrogen-containing compounds. Moreover, the major type of potential BrC in HULIS and MP carbon fractions are oxidized BBOA, but the potential BrC chromophores in LP are mainly associated with primary BBOA. This study reveals that biomass burning has adverse effects on radiative forcing and air quality, and probably indicates the significant influences of atmospheric oxidation reactions on the forms of chromophores.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , China
16.
Clin Spine Surg ; 33(3): 111-119, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31634174

RESUMO

STUDY DESIGN: This is a systematic review and meta-analysis study. OBJECTIVE: The purpose of this systematic review and meta-analysis study is to evaluate the outcomes of a tantalum fusion device in anterior cervical discectomy and fusion (ACDF) for the treatment of cervical degeneration disease. SUMMARY OF BACKGROUND DATA: A great interest has raised for porous tantalum in cervical fusion, but several studies reported the divergent clinical outcome and fusion rate. No systematic review and meta-analysis has been conducted up to present to evaluate the outcomes of the tantalum fusion device. METHODS: We comprehensively searched multiple databases for studies that investigated the tantalum fusion device in ACDF. The retrieved results were last updated on February 15, 2018. Outcomes of interest comprised of operative parameters, fusion rate, the incidence of adverse events as well as patient-reported outcomes, including the Neck Disability Index (NDI) score, Visual Analog Scale (VAS) score, Short Form-36 Physical Component Scores and complications. RESULTS: Ten studies included were included in this review and 6 randomized controlled trial studies included. All studies were pooled to evaluate the outcome of fusion rate, NDI, and VAS after tantalum fusion treatment. The results of the meta-analysis showed that implantation of the tantalum fusion device is associated with significantly shorter operative and fewer adverse events when compared with autologous iliac crest bone graft. However, no difference was found with regards to the fusion rate, NDI, VAS, and global assessment. CONCLUSIONS: Through this systemic review and meta-analysis, no significant difference was found with regards to fusion rate, postoperative NDI, and VAS between tantalum fusion and iliac crest bone graft in ACDF. More longer-term and randomized studies with large samples are warranted to validate any association found in this study. LEVEL OF EVIDENCE: Level II.


Assuntos
Vértebras Cervicais , Discotomia/instrumentação , Degeneração do Disco Intervertebral/cirurgia , Fusão Vertebral/instrumentação , Humanos , Tantálio , Resultado do Tratamento
17.
Environ Sci Technol ; 52(21): 12546-12555, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30244568

RESUMO

Monosaccharides are important tracers of pollution aerosol from biomass burning. Air sampling of monosaccharides is often conducted using active samplers. However, applicability of sampling monosaccharides using polyurethane foam passive air samplers (PUF-PASs) has not been investigated, since passive air samplers are often applied to monitor semivolatile organic contaminants in large scale and remote area. Our study successfully collected atmospheric monosaccharides using PUF-PASs, providing a valuable tool for monosaccharides sampling. PUF-PAS sampling rates for individual monosaccharides were calibrated using an active sampler for 92 days, and were 1.1, 1.5, and 1.1 m3/d for levoglucosan, mannosan, and galactosan, respectively. Degradation of monosaccharides in PUF-PAS was demonstrated to be negligible by spike test of 13C-labeled levoglucosan. Furthermore, passive sampling was carried out at 11 sites in the Pearl River Delta of Southern China from January to April and July to September of 2015. Monosaccharide concentrations derived from PUF-PASs were comparable with the reported data obtained by active sampling, demonstrating that the PUF-PAS approach is valid for monosaccharides monitoring. On the basis of our approach, we found that there is a clear correlation between the monosaccharide concentrations and the MODIS fire activities during January-April.


Assuntos
Poluentes Atmosféricos , China , Monitoramento Ambiental , Monossacarídeos , Poliuretanos
18.
PeerJ ; 6: e4304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29404213

RESUMO

Migratory birds often follow detours when confronted with ecological barriers, and understanding the extent and the underlying drivers of such detours can provide important insights into the associated cost to the annual energy budget and the migration strategies. The Qinghai-Tibetan Plateau is the most daunting geographical barrier for migratory birds because the partial pressure of oxygen is dramatically reduced and flight costs greatly increase. We analyzed the repeated migration detours and habitat associations of four Pallas's Gulls Larus ichthyaetus across the Qinghai-Tibetan Plateau over 22 migration seasons. Gulls exhibited notable detours, with the maximum distance being more than double that of the expected shortest route, that extended rather than reduced the passage across the plateau. The extent of longitudinal detours significantly increased with latitude, and detours were longer in autumn than in spring. Compared with the expected shortest routes, proximity to water bodies increased along autumn migration routes, but detour-habitat associations were weak along spring migration routes. Thus, habitat availability was likely one, but not the only, factor shaping the extent of detours, and migration routes were determined by different mechanisms between seasons. Significant between-individual variation but high individual consistency in migration timing and routes were revealed in both seasons, indicating a stronger influence of endogenous schedules than local environmental conditions. Gulls may benefit from repeated use of familiar routes and stopover sites, which may be particularly significant in the challenging environment of the Qinghai-Tibetan Plateau.

19.
Methods Mol Biol ; 1652: 295-300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28791649

RESUMO

ErbB receptor signaling plays pivotal roles in tumorigenesis, cancer development, and drug resistance. A better understanding of ErbB signaling is required to achieve better clinical outcomes in cancer treatment. With increasing evidence showing the link between human mesenchymal stem cells (MSCs) and cancer, there is a growing interest in studying the role of ErbB receptor signaling in the regulation of MSCs. For this purpose, obtaining quality primary human MSCs is of great importance. This chapter describes the method of isolating primary human MSCs, aiming to offer researchers of this field a useful tool.


Assuntos
Separação Celular , Receptores ErbB/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais , Biomarcadores , Separação Celular/métodos , Centrifugação com Gradiente de Concentração , Humanos
20.
PeerJ ; 5: e3380, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28560115

RESUMO

The Relict Gull Larus relictus is a globally vulnerable species and one of the least known birds, so understanding its seasonal movements and migration will facilitate the development of effective conservation plans for its protection. We repeatedly satellite-tracked 11 adult Relict Gulls from the Ordos sub-population in Hongjian Nur, China, over 33 migration seasons and conducted extensive ground surveys. Relict Gulls traveled ∼800 km between Hongjian Nur in northern China to the coast of eastern China in a predominantly longitudinal migration, following a clockwise loop migration pattern. The gulls migrated faster in spring (4 ± 2 d) than in autumn (15 ± 13 d) due to a time-minimization strategy for breeding, and they showed considerable between-individual variation in the timing of the autumn migration, probably due to differences in the timing of breeding. Gulls that made at least two round trips exhibited high flexibility in spring migration timing, suggesting a stronger influence of local environment conditions over endogenous controls. There was also high route flexibility among different years, probably due to variations in meteorological or habitat conditions at stopover sites. Relict Gulls stayed for a remarkably long time (234 ± 17 d) on their major wintering grounds in Bohai Bay and Laizhou Bay, between which there were notable dispersals. Pre-breeding dispersals away from the breeding area were distinct, which seemed to be a strategy to cope with the degradation of breeding habitat at Hongjian Nur. Overwhelming lake shrinkage on the breeding ground and at stopover sites and loss of intertidal flats on the wintering grounds are regarded as the main threats to Relict Gulls. It is crucial to make protection administrations aware of the great significance of key sites along migration routes and to promote the establishment of protected areas in these regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA