Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1436912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027672

RESUMO

Nitrogen (N), as one of the most abundant mineral elements in rice, not only is the primary limiting factor for rice yield, but also impacts plant disease resistance by modulating plant morphology, regulating biochemical characteristics, as well as enhancing metabolic processes. Bacterial blight, a severe bacterial disease caused by Xanthomonas oryzae pv. oryzae (Xoo), significantly impairing rice yield and quality. Previous studies have shown that moderate application of nitrate nitrogen can improve plant disease resistance. However, further exploration is urgently required to investigate the involvement of the nitrate nitrogen signaling pathway in conferring resistance against bacterial leaf blight. In this study, we employed transcriptome sequencing to analyze the differentially expressed genes under various concentrations of nitrate supply duringrice bacterial blight infection. Our research reveals that nitrate nitrogen supply influences rice resistance to bacterial leaf blight. Through transcriptomic profiling of rice leaves inoculated under different nitrate nitrogen concentrations, we identified 4815 differentially expressed genes (DEGs) among four comparison groups, with notable differences in DEG enrichment between low and high nitrate nitrogen conditions, with some members of the NPF family implicated and we preliminarily elucidated the molecular regulatory network in which nitrate nitrogen participates in bacterial leaf blight resistance. Our findings provide a novel insight into a mechanism involving the nitrate nitrogen drive wider defense in rice.

2.
BMC Plant Biol ; 24(1): 321, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654179

RESUMO

BACKGROUND: pOsNAR2.1:OsNAR2.1 expression could significantly increase nitrogen uptake efficiency and grain yield of rice. RESULT: This study reported the effects of overexpression of OsNAR2.1 by OsNAR2.1 promoter on physiological and agronomic traits associated with drought tolerance. In comparison to the wild-type (WT), the pOsNAR2.1:OsNAR2.1 transgenic lines exhibited a significant improvement in survival rate when subjected to drought stress and then irrigation. Under limited water supply conditions, compared with WT, the photosynthesis and water use efficiency (WUE) of transgenic lines were increased by 39.2% and 28.8%, respectively. Finally, the transgenic lines had 25.5% and 66.4% higher grain yield than the WT under full watering and limited water supply conditions, respectively. Compared with the WT, the agronomic nitrogen use efficiency (NUE) of transgenic lines increased by 25.5% and 66.4% under full watering and limited water supply conditions, and the N recovery efficiency of transgenic lines increased by 29.3% and 50.2%, respectively. The interaction between OsNAR2.1 protein and OsPLDα1 protein was verified by yeast hybrids. After drought treatment, PLDα activity on the plasma membrane of the transgenic line increased 85.0% compared with WT. CONCLUSION: These results indicated that pOsNAR2.1:OsNAR2.1 expression could improve the drought resistance of rice by increasing nitrogen uptake and regulating the expression of OsPLDα1.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Regiões Promotoras Genéticas , Resistência à Seca , Nitrogênio/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
3.
Comput Biol Med ; 167: 107609, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37883854

RESUMO

Cerebrovascular (i.e., cerebral vessel) segmentation is essential for diagnosing and treating brain diseases. Convolutional neural network models, such as U-Net, are commonly used for this purpose. Unfortunately, such models may not be entirely satisfactory in dealing with cerebrovascular segmentation with tumors due to the following issues: (1) Relatively small number of clinical datasets from patients obtained through different modalities such as computed tomography (CT) and magnetic resonance imaging (MRI), leading to inadequate training and lack of transferability in the modeling; (2) Insufficient feature extraction caused by less attention to both convolution sizes and cerebral vessel edges. Inspired by the existence of similar features on cerebral vessels between normal subjects and patients, we propose a transfer learning strategy based on a pre-trained nested model called TL-MSE2-Net. This model uses one of the publicly available datasets for cerebrovascular segmentation with aneurysms. To address issue (1), our transfer learning strategy leverages a pre-trained model that uses a large number of datasets from normal subjects, providing a potential solution to the lack of sufficient clinical datasets. To tackle issue (2), we structure the pre-trained model based on 3D U-Net, comprising three blocks: ResMul, DeRes, and REAM. The ResMul and DeRes blocks enhance feature extraction by utilizing multiple convolution sizes to capture multiscale features, and the REAM block increases the weight of the voxels on the edges of the given 3D volume. We evaluated the proposed model on one small private clinical dataset and two publicly available datasets. The experimental results demonstrated that our MSE2-Net framework achieved an average Dice score of 70.81 % and 89.08 % on the two publicly available datasets, outperforming other state-of-the-art methods. Ablation studies were also conducted to validate the effectiveness of each block. The proposed TL-MSE2-Net yielded better results than MSE2-Net on a small private clinical dataset, with increases of 5.52 %, 3.37 %, 6.71 %, and 0.85 % for the Dice score, sensitivity, Jaccard index, and precision, respectively.


Assuntos
Aneurisma , Aprendizagem , Humanos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador
4.
Plants (Basel) ; 12(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687412

RESUMO

As a great threat to the normal growth of rice, drought not only restricts the growth of rice, but also affects its yield. Glutathione S-transferases (GSTs) have antioxidant and detoxification functions. In rice, GSTs can not only effectively cope with biological stress, but also play a defense role against abiotic stress. In this study, we selected OsGSTU17, a member gene that was induced by drought, to explore the role of GSTs and analyze their physiological mechanisms that are involved in rice drought tolerance. With the CRISPR/Cas9 knockout system techniques, we obtained two independent mutant lines of osgstu17. After 14 days of drought stress treatment, and then re-supply of the water for 10 days, the survival rate of the osgstu17 mutant lines was significantly reduced compared to the wild-type (WT). Similarly, with the 10% (w/v) PEG6000 hydroponics experiment at the seedling stage, we also found that compared with the WT, the shoot and root biomass of osgstu17 mutant lines decreased significantly. In addition, both the content of the MDA and H2O2, which are toxic to plants, increased in the osgtu17 mutant lines. On the other hand, chlorophyll and proline decreased by about 20%. The activity of catalase and superoxide dismutase, which react with peroxides, also decreased by about 20%. Under drought conditions, compared with the WT, the expressions of the drought stress-related genes OsNAC10, OsDREB2A, OsAP37, OsP5CS1, OsRAB16C, OsPOX1, OsCATA, and OsCATB in the osgtu17 mutant lines were significantly decreased. Finally, we concluded that knocking out OsGSTU17 significantly reduced the drought tolerance of rice; OsGSTU17 could be used as a candidate gene for rice drought-tolerant cultivation. However, the molecular mechanism of OsGSTU17 involved in rice drought resistance needs to be further studied.

5.
Curr Issues Mol Biol ; 44(5): 2350-2361, 2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35678689

RESUMO

Lesion mimic mutants refer to a class of mutants that naturally form necrotic lesions similar to allergic reactions on leaves in the absence of significant stress or damage and without being harmed by pathogens. Mutations in most lesion mimic genes, such as OsACL-A2 and OsSCYL2, can enhance mutants' resistance to pathogens. Lesion mimic mutants are ideal materials for studying programmed cell death (PCD) and plant defense mechanisms. Studying the genes responsible for the rice disease-like phenotype is of great significance for understanding the disease resistance mechanism of rice. In this paper, the nomenclature, occurrence mechanism, genetic characteristics, regulatory pathways, and the research progress on the cloning and disease resistance of rice lesion mimic mutant genes were reviewed, in order to further analyze the various lesion mimic mutants of rice. The mechanism lays a theoretical foundation and provides a reference for rice breeding.

6.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328589

RESUMO

Grain size is a quantitative trait that is controlled by multiple genes. It is not only a yield trait, but also an important appearance quality of rice. In addition, grain size is easy to be selected in evolution, which is also a significant trait for studying rice evolution. In recent years, many quantitative trait loci (QTL)/genes for rice grain size were isolated by map-based cloning or genome-wide association studies, which revealed the genetic and molecular mechanism of grain size regulation in part. Here, we summarized the QTL/genes cloned for grain size and the regulation mechanism with a view to provide the theoretical basis for improving rice yield and breeding superior varieties.


Assuntos
Oryza , Mapeamento Cromossômico , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas
7.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769104

RESUMO

Soil salinization caused by the accumulation of sodium can decrease rice yield and quality. Identification of rice salt tolerance genes and their molecular mechanisms could help breeders genetically improve salt tolerance. We studied QTL mapping of populations for rice salt tolerance, period and method of salt tolerance identification, salt tolerance evaluation parameters, identification of salt tolerance QTLs, and fine-mapping and map cloning of salt tolerance QTLs. We discuss our findings as they relate to other genetic studies of salt tolerance association.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Tolerância ao Sal/genética , Mapeamento Cromossômico , Clonagem Molecular , Melhoramento Vegetal , Característica Quantitativa Herdável
8.
Plant J ; 108(6): 1690-1703, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628678

RESUMO

The riboflavin derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential cofactors for enzymes in multiple cellular processes. Characterizing mutants with impaired riboflavin metabolism can help clarify the role of riboflavin in plant development. Here, we characterized a rice (Oryza sativa) white and lesion-mimic (wll1) mutant, which displays a lesion-mimic phenotype with white leaves, chlorophyll loss, chloroplast defects, excess reactive oxygen species (ROS) accumulation, decreased photosystem protein levels, changes in expression of chloroplast development and photosynthesis genes, and cell death. Map-based cloning and complementation test revealed that WLL1 encodes lumazine synthase, which participates in riboflavin biosynthesis. Indeed, the wll1 mutant showed riboflavin deficiency, and application of FAD rescued the wll1 phenotype. In addition, transcriptome analysis showed that cytokinin metabolism was significantly affected in wll1 mutant, which had increased cytokinin and δ-aminolevulinic acid contents. Furthermore, WLL1 and riboflavin synthase (RS) formed a complex, and the rs mutant had a similar phenotype to the wll1 mutant. Taken together, our findings revealed that WLL1 and RS play pivotal roles in riboflavin biosynthesis, which is necessary for ROS balance and chloroplast development in rice.


Assuntos
Cloroplastos/fisiologia , Complexos Multienzimáticos/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clorofila/genética , Clorofila/metabolismo , Citocininas/genética , Citocininas/metabolismo , Dano ao DNA , Evolução Molecular , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos/genética , Mutação , Fenótipo , Filogenia , Folhas de Planta/citologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Riboflavina/genética , Riboflavina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
9.
Phytomedicine ; 89: 153593, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34182194

RESUMO

BACKGROUND: Effective therapies are needed to prevent the secondary injury and poor prognosis associated with emergency craniotomy of traumatic brain injury (TBI). HYPOTHESIS/PURPOSE: The wound-healing medicine Yunnan Baiyao (YB) and Xingnaojing (XNJ) adjunct-therapy may improve the outcome of orthodox mono-therapy (OT). STUDY DESIGN: Randomized controlled trial. METHODS: Eighty patients with moderate-to-severe TBI received emergency craniotomy (within 12 h after TBI) at the Chinese PLA General Hospital before being randomly assigned to 4 different treatments (n = 20) for 7 days: 1) OT; 2) OT+XNJ (i.v. 20 ml/daily); 3) OT+low dose-YB (oral, 1,000 mg/day); 4) OT+high dose-YB, 2,000 mg/day). RESULTS: GCS score was improved more quickly and became significantly higher in XNJ, l-YB, h-YB groups than in OT group (p<0.01). Serum S100B peaked higher but declined more slowly in OT group than in other groups (p<0.01). On postoperative Day 7, S100B was 20% below baseline in YB and XNJ groups but remained 19% above baseline in OT group which also lost 38% of superoxide dismutase (SOD) activity on Day 3 and recovered 69% of SOD on Day 7 whereas the YB and XNJ groups lost 16%∼23% of SOD activity on Day 3 and recovered 92%∼99% of SOD on Day 7 (p<0.01). Clinical prognosis (Glasgow Outcome Scale and Karnofsky Performance Scale) were significantly better (25%∼30%) in the XNJ, l-YB and h-YB groups than in OT group 3 months post-surgery and were correlated with serum S100B and SOD. CONCLUSIONS: YB and XNJ adjunct therapies improved postoperative recovery and clinical prognosis in patients with moderate-to-severe TBI partly through divergent regulation of S100B and SOD pathways. (The trial was registered at Chinese Clinical Trial Registry (ChiCTR) trial registration number: ChiCTR2000030280).


Assuntos
Lesões Encefálicas Traumáticas , Medicamentos de Ervas Chinesas/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/cirurgia , China , Terapia Combinada , Craniotomia , Humanos , Cuidados Pós-Operatórios , Prognóstico
10.
Mol Plant ; 14(10): 1683-1698, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34186219

RESUMO

Grain size is one of the most important factors that control rice yield, as it is associated with grain weight (GW). To date, dozens of rice genes that regulate grain size have been isolated; however, the regulatory mechanism underlying GW control is not fully understood. Here, the quantitative trait locus qGL5 for grain length (GL) and GW was identified in recombinant inbred lines of 9311 and Nipponbare (NPB) and fine mapped to a candidate gene, OsAUX3. Sequence variations between 9311 and NPB in the OsAUX3 promoter and loss of function of OsAUX3 led to higher GL and GW. RNA sequencing, gene expression quantification, dual-luciferase reporter assays, chromatin immunoprecipitation-quantitative PCR, and yeast one-hybrid assays demonstrated that OsARF6 is an upstream transcription factor regulating the expression of OsAUX3. OsARF6 binds directly to the auxin response elements of the OsAUX3 promoter, covering a single-nucleotide polymorphism site between 9311 and NPB/Dongjin/Hwayoung, and thereby controls GL by altering longitudinal expansion and auxin distribution/content in glume cells. Furthermore, we showed that miR167a positively regulate GL and GW by directing OsARF6 mRNA silencing. Taken together, our study reveals that a novel miR167a-OsARF6-OsAUX3 module regulates GL and GW in rice, providing a potential target for the improvement of rice yield.


Assuntos
Ácidos Indolacéticos/metabolismo , MicroRNAs/fisiologia , Oryza/genética , RNA de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Grão Comestível/anatomia & histologia , Grão Comestível/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Oryza/anatomia & histologia , Regiões Promotoras Genéticas , Ligação Proteica , Locos de Características Quantitativas
11.
Childs Nerv Syst ; 37(6): 2091-2095, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33638654

RESUMO

BACKGROUND: Cerebellar medulloblastomas are the most common malignant tumors of the posterior fossa in childhood that frequently metastasize. Leptomeningeal dissemination and distant metastasis have been associated with medulloblastomas; however, intramedullary metastases are rare with very few case reports in the literature available. METHODS: We present a case of a 3-year-old girl with a medulloblastoma who underwent surgical resection of spinal intramedullary metastases. Histopathology revealed the tumor to be an anaplastic medulloblastoma similar to the intracranial lesions. The patient subsequently underwent postoperative chemotherapy followed by radiotherapy. RESULTS: Following the surgery and subsequent follow-up, the patient showed a good recovery without any new neurological dysfunction. CONCLUSIONS: Intramedullary metastasis of medulloblastoma remains a rare disease. Surgical resection could play a possible role in the management in addition to radiation and chemotherapy.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/terapia , Pré-Escolar , Feminino , Humanos , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/terapia
12.
Food Chem ; 344: 128632, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229146

RESUMO

In this study, the effects of high hydrostatic pressure (HHP) and steam on biochemical composition and non-volatile taste active compounds of oysters Crassostrea hongkongensis were investigated. The moisture content in steamed oysters significantly decreased when compared to raw samples, subsequently their crude protein, crude lipid, glycogen and ash contents (% wet weight) were all increased (P < 0.05). In addition, though the moisture content in HHP oysters decreased, no significant differences were observed in proximate compositions compared to raw oysters, except crude protein. There were no significant differences in saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) profiles between raw and HHP oysters, however, C20:3n6 content in HHP oysters was significantly higher than that in raw samples (P < 0.05). The PUFA profile of steamed oysters, mostly contributed by n-3 PUFA, was significantly higher than that of both raw and HHP samples (P < 0.05). Major free amino acids (FAA) (taste activity value, TAV > 1) in oysters with three treatments were alanine, glycine, glutamic acid and histidine, and their contents were significantly higher in raw and HHP groups than that in steamed group. The 5'-inosine monophosphate (IMP) and 5'-guanosine monophosphate (GMP) in HHP and steamed oysters decreased compared to raw samples, while AMP content in steam oysters were significantly increased (P < 0.05). The equivalent umami concentration (EUC) of oysters of raw, HHP and steamed groups were 8.80, 3.66 and 1.44 g MSG/100 g, respectively, with significant differences observed among different treatments (P < 0.05). Succinic acid was the major organic acid in raw and HHP oysters, while lactic acid was the major organic acid in steamed groups. Further, Na+, K+, PO43- and Cl- were the main inorganic ions (TAV > 1), and their contents were significantly higher in raw and HHP groups than that in steamed group (P < 0.05). This study demonstrated that HHP treatment slightly influenced the changes in the biochemical composition and non-volatile taste active compounds to raw oysters, compared to steamed process.


Assuntos
Aminoácidos/análise , Crassostrea/química , Indústria de Processamento de Alimentos/métodos , Frutos do Mar/análise , Animais , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Insaturados/análise , Pressão Hidrostática , Vapor , Paladar , Compostos Orgânicos Voláteis
13.
BMC Plant Biol ; 20(1): 393, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847519

RESUMO

BACKGROUND: Early leaf senescence influences yield and yield quality by affecting plant growth and development. A series of leaf senescence-associated molecular mechanisms have been reported in rice. However, the complex genetic regulatory networks that control leaf senescence need to be elucidated. RESULTS: In this study, an early senescence 2 (es2) mutant was obtained from ethyl methanesulfonate mutagenesis (EMS)-induced mutational library for the Japonica rice cultivar Wuyugeng 7 (WYG7). Leaves of es2 showed early senescence at the seedling stage and became severe at the tillering stage. The contents of reactive oxygen species (ROS) significantly increased, while chlorophyll content, photosynthetic rate, catalase (CAT) activity significantly decreased in the es2 mutant. Moreover, genes which related to senescence, ROS and chlorophyll degradation were up-regulated, while those associated with photosynthesis and chlorophyll synthesis were down-regulated in es2 mutant compared to WYG7. The ES2 gene, which encodes an inositol polyphosphate kinase (OsIPK2), was fine mapped to a 116.73-kb region on chromosome 2. DNA sequencing of ES2 in the mutant revealed a missense mutation, ES2 was localized to nucleus and plasma membrane of cells, and expressed in various tissues of rice. Complementation test and overexpression experiment confirmed that ES2 completely restored the normal phenotype, with chlorophyll contents and photosynthetic rate increased comparable with the wild type. These results reveal the new role of OsIPK2 in regulating leaf senescence in rice and therefore will provide additional genetic evidence on the molecular mechanisms controlling early leaf senescence. CONCLUSIONS: The ES2 gene, encoding an inositol polyphosphate kinase localized in the nucleus and plasma membrane of cells, is essential for leaf senescence in rice. Further study of ES2 will facilitate the dissection of the genetic mechanisms underlying early leaf senescence and plant growth.


Assuntos
Envelhecimento/genética , Inositol/genética , Inositol/metabolismo , Oryza/genética , Oryza/fisiologia , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Envelhecimento/fisiologia , China , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Folhas de Planta/genética , Folhas de Planta/fisiologia
14.
Rice (N Y) ; 13(1): 49, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681435

RESUMO

BACKGROUND: Chloroplasts are essential for photosynthesis and play key roles in plant development. High temperature affects structure of chloroplasts and metabolism in plants. The seryl-tRNA synthetase plays an important role in translation of proteins. Although seryl-tRNA synthetase has been widely studied in microbes and animals, few studies have reported about its role in chloroplast development under high temperature in rice. RESULTS: In this study, we isolated a novel temperature-sensitive chlorophyll-deficient 11 (tscd11) mutant by ethyl methane sulfonate (EMS) mutagenesis of japonica variety Wuyujing7. The tscd11 mutant developed albino leaves at the 3-leaf stage under high temperature (35 °C), but had normal green leaves under low temperature (25 °C). Consistent with the albino phenotype, impaired chloroplasts, decreased chlorophyll content and increased ROS accumulation were found in the tscd11 mutant at 35 °C. Fine mapping and DNA sequencing of tscd11 revealed a missense mutation (G to A) in the eighth exon of LOC_Os11g39670 resulted in amino acid change (Glu374 to Lys374). The TSCD11 gene encodes a seryl-tRNA synthetase localized to chloroplast. Complementation test confirmed that the point mutation in TSCD11 is responsible for the phenotype of tscd11. TSCD11 is highly expressed in leaves. Compared with the wild type (WT), mutation in TSCD11 led to significant alteration in expression levels of genes associated with chlorophyll biosynthesis, photosynthesis and chloroplast development under high temperature. CONCLUSIONS: TSCD11, encoding a seryl-tRNA synthetase localized to chloroplast, is vital to early chloroplast development at high temperature in rice, which help to further study on the molecular mechanism of chloroplast development under high temperature.

15.
Front Plant Sci ; 11: 342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265976

RESUMO

Rice (Oryza sativa L.) is an important cereal that provides food for more than half of the world's population. Besides grain yield, improving grain quality is also essential to rice breeders. Amylose content (AC), gelatinization temperature (GT) and gel consistency (GC) are considered to be three indicators for cooking and eating quality in rice. Using a genetic map of RILs derived from the super rice Liang-You-Pei-Jiu with high-density SNPs, we detected 3 QTLs for AC, 3 QTLs for GT, and 8 QTLs for GC on chromosomes 3, 4, 5, 6, 10, and 12. Wx locus, an important determinator for AC and GC, resided in one QTL cluster for AC and GC, qAC6 and qGC6 here. And a novel major QTL qGC10 on chromosome 10 was identified in both Lingshui and Hangzhou. With the BC4F2 population derived from a CSSL harboring the segment for qGC10 from 93-11 in PA64s background, it was fine mapped between two molecular markers within 181 kb region with 27 annotated genes. Quantitative real-time PCR results showed that eight genes were differentially expressed in endosperm of two parents. After DNA sequencing, only LOC_Os10g04900, which encodes a F-box domain containing protein, has 2 bp deletion in the exon of PA64s, resulting in a premature stop codon. Therefore, LOC_Os10g04900 is considered to be the most likely candidate gene for qGC10 associated with gel consistency. Identification of qGC10 provides a new genetic resource for improvement of rice quality.

16.
J Integr Plant Biol ; 62(3): 349-359, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31957138

RESUMO

Enriching zinc (Zn) and selenium (Se) levels, while reducing cadmium (Cd) concentration in rice grains is of great benefit for human diet and health. Large natural variations in grain Zn, Se, and Cd concentrations in different rice accessions enable Zn/Se-biofortification and Cd-minimization through molecular breeding. Here, we report the development of new elite varieties by pyramiding major quantitative trait loci (QTLs) that significantly contribute to high Zn/Se and low Cd accumulation in grains. A chromosome segment substitution line CSSLGCC7 with the PA64s-derived GCC7 allele in the 93-11 background, exhibited steadily higher Mn and lower Cd concentrations in grains than those of 93-11. This elite chromosome segment substitution line (CSSL) was used as the core breeding material to cross with CSSLs harboring other major QTLs for essential mineral elements, especially CSSLGZC6 for grain Zn concentration and CSSLGSC5 for grain Se concentration. The CSSLGCC7+GZC6 and CSSLGCC7+GSC5 exhibited lower Cd concentration with higher Zn and Se concentrations in grains, respectively. Our study thus provides elite materials for rice breeding targeting high Zn/Se and low Cd concentrations in grains.


Assuntos
Cádmio/metabolismo , Oryza/metabolismo , Selênio/metabolismo , Zinco/metabolismo , Alelos , Grão Comestível/genética , Grão Comestível/metabolismo , Oryza/genética , Locos de Características Quantitativas/genética
17.
Nat Commun ; 10(1): 5207, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729387

RESUMO

The indica and japonica rice (Oryza sativa) subspecies differ in nitrate (NO3-) assimilation capacity and nitrogen (N) use efficiency (NUE). Here, we show that a major component of this difference is conferred by allelic variation at OsNR2, a gene encoding a NADH/NADPH-dependent NO3- reductase (NR). Selection-driven allelic divergence has resulted in variant indica and japonica OsNR2 alleles encoding structurally distinct OsNR2 proteins, with indica OsNR2 exhibiting greater NR activity. Indica OsNR2 also promotes NO3- uptake via feed-forward interaction with OsNRT1.1B, a gene encoding a NO3- uptake transporter. These properties enable indica OsNR2 to confer increased effective tiller number, grain yield and NUE on japonica rice, effects enhanced by interaction with an additionally introgressed indica OsNRT1.1B allele. In consequence, indica OsNR2 provides an important breeding resource for the sustainable increases in japonica rice yields necessary for future global food security.


Assuntos
Nitrato Redutase/genética , Nitrogênio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Alelos , Transporte Biológico , Nitrato Redutase/química , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Oryza/enzimologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
18.
Rice (N Y) ; 12(1): 33, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076960

RESUMO

BACKGROUND: Detecting and mapping chromosomal regions that are related to quantitative phenotypic variation in chromosome segment substitution lines (CSSLs) provides an effective means to characterize the genetic basis of complex agronomic trait. CSSLs are also powerful tools for studying the effects of quantitative trait loci (QTLs) pyramiding and interaction on phenotypic variation. RESULTS: Here, we developed three sets of CSSLs consisting of 81, 55, and 61 lines, which were derived from PA64s × 9311, Nipponbare × 9311 and PA64s × Nipponbare crosses, respectively. All of the 197 CSSLs were subjected to high-throughput genotyping by whole-genome resequencing to obtain accurate physical maps for the 3 sets of CSSLs. The 3 sets of CSSLs were used to analyze variation for 11 major agronomic traits in Hangzhou and Shenzhen and led to the detection of 71 QTLs with phenotypic effect that ranged from 7.6% to 44.8%. Eight QTLs were commonly detected under two environments for the same phenotype, and there were also 8 QTL clusters that were found. Combined with GWAS on grain length and expression profiles on young panicle tissues, qGL1 detected in CSSLs was fine mapped within a 119 kb region on chromosome 1 and LOC_Os01g53140 and LOC_Os01g53250 were the two most likely candidate genes. CONCLUSIONS: Our results indicate that developing CSSLs genotyped by whole-genome resequencing are powerful tools for basic genetic research and provide a platform for the rational design of rice breeding. Meanwhile, the conjoint analysis of different CSSLs, natural population and expression profiles can facilitate QTL fine mapping.

19.
Appl Opt ; 58(4): 1073-1083, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874157

RESUMO

In the automatic detection for surface defects of optical components, the digs and dust particles exhibit similar features: point-like shape and variable intensity reflectivity. On this condition, these two types with entirely different damages are easily confused so that misjudgments will be induced. To solve this problem, a polarization-characteristics-based classification method of digs and dust particles (PCCDD) is proposed based on the polarimetric imaging technique and dark-field imaging technique. First, a dark-field imaging system equipped with a polarization state generator (PSG) and a polarization state analyzer (PSA) is employed to measure and establish normalized Mueller matrices' datasets of digs and dust particles. And by a nonlinear global search combined with a separability evaluation method, the optimal number of acquisitions and corresponding polarization measurement states of the PSG and the PSA are obtained, as well as the parameters of classification function. Then, multiple polarization images are acquired under the optimal states to extract a multidimensional feature description that relates only to the polarization characteristics of the defect; this subsequently acts as the input vector of the classifier to finally achieve the classification. This method takes full advantage of both the difference in polarization properties between digs and dust particles and the characteristic that the polarization properties of digs are relatively invariant while those of dust particles have a large variability. The classification process involves only simple matrix operations. Compared to the traditional discrimination method based on intensity images, the features obtained by this method have a higher separability. Experiments show that the classification accuracy reaches over 90%. This method can be further applied to the recognition and discrimination of other defects in the field of surface defects' detection.

20.
Plant Biotechnol J ; 17(7): 1344-1356, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30582769

RESUMO

ATP-citrate lyases (ACL) play critical roles in tumour cell propagation, foetal development and growth, and histone acetylation in human and animals. Here, we report a novel function of ACL in cell death-mediated pathogen defence responses in rice. Using ethyl methanesulphonate (EMS) mutagenesis and map-based cloning, we identified an Oryza sativa ACL-A2 mutant allele, termed spotted leaf 30-1 (spl30-1), in which an A-to-T transversion converts an Asn at position 343 to a Tyr (N343Y), causing a recessive mutation that led to a lesion mimic phenotype. Compared to wild-type plants, spl30-1 significantly reduces ACL enzymatic activity, accumulates high reactive oxygen species and increases degradation rate of nuclear deoxyribonucleic acids. CRISPR/Cas9-mediated insertion/deletion mutation analysis and complementation assay confirmed that the phenotype of spl30-1 resulted from the defective function of OsACL-A2 protein. We further biochemically identified that the N343Y mutation caused a significant degradation of SPL30N343Y in a ubiquitin-26S proteasome system (UPS)-dependent manner without alteration in transcripts of OsACL-A2 in spl30-1. Transcriptome analysis identified a number of up-regulated genes associated with pathogen defence responses in recessive mutants of OsACL-A2, implying its role in innate immunity. Suppressor mutant screen suggested that OsSL, which encodes a P450 monooxygenase protein, acted as a downstream key regulator in spl30-1-mediated pathogen defence responses. Taken together, our study discovered a novel role of OsACL-A2 in negatively regulating innate immune responses in rice.


Assuntos
ATP Citrato (pro-S)-Liase/genética , Morte Celular , Resistência à Doença , Oryza/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/enzimologia , Fenótipo , Imunidade Vegetal , Folhas de Planta , Complexo de Endopeptidases do Proteassoma , Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA