Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Med Chem ; 67(4): 3190-3202, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38320123

RESUMO

Fibroblast activation protein (FAP), which is expressed on the cell membranes of fibroblasts in most solid tumors, has become an important target for tumor diagnosis and treatment. However, previously reported 99mTc-labeled FAPI-04 complexes have high blood uptake, limiting their use in the clinic. In this work, six 99mTc-labeled FAPI-46 derivatives with different linkers (different amino acids, peptides, or polyethylene glycol) were prepared and evaluated. They had good in vitro stability, hydrophilicity, and good specificity for FAP. The biodistribution and MicroSPECT images revealed that they all had high specific tumor uptake for FAP, and their blood uptake was significantly decreased. Among them, [99mTc]Tc-6-1 exhibited the highest target-to-nontarget ratios (tumor/blood: 6.06 ± 1.19; tumor/muscle: 10.26 ± 0.44) and good tumor uptake (16.15 ± 0.83%ID/g), which also had significantly high affinity for FAP, good in vivo stability, and safety. Therefore, [99mTc]Tc-6-1 holds great potential as a promising molecular tracer for FAP tumor imaging.


Assuntos
Quinolinas , Transporte Biológico , Linhagem Celular Tumoral , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Tecnécio/química
2.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37765084

RESUMO

When developing novel radiopharmaceuticals, a linker moiety between the chelator and targeting vector can have a crucial influence on adjusting the affinity of the tracer and its biodistribution in organisms. To develop novel 99mTc-labelled hypoxia imaging radiotracers, in this study, five isocyanide-containing 2-nitroimidazole derivatives with different linkers (L1, L2, L3, L4 and L5) were synthesised and radiolabelled with technetium-99m to obtain five stable 99mTc-complexes ([99mTc]Tc-L1, [99mTc]Tc-L2, [99mTc]Tc-L3, [99mTc]Tc-L4 and [99mTc]Tc-L5). Corresponding rhenium analogues of [99mTc]Tc-L1 were synthesised and suggested the structures of these 99mTc-complexes would be a monovalent cation with a technetium (I) core surrounded by six ligands. [99mTc]Tc-L1 is hydrophilic, while the lipophilicities of [99mTc]Tc-L2, [99mTc]Tc-L3, [99mTc]Tc-L4 and [99mTc]Tc-L5 are close. In vitro cell experiments showed that all five novel 99mTc-complexes had higher uptake in hypoxic cells compared with aerobic cells, which indicates the complexes have good hypoxia selectivity. The biodistribution of the five 99mTc-complexes in S180 tumour-bearing mice showed that they all had certain uptake in the tumours. Among them, [99mTc]Tc-L1 had the highest tumour-to-muscle (4.68 ± 0.44) and tumour-to-blood (3.81 ± 0.46) ratios. The introduction of polyethylene glycol (PEG) chains effectively reduced the lipophilicity and decreased uptake by the liver, intestine and blood but also increased clearance from the tumours. In vivo metabolic studies showed [99mTc]Tc-L1 kept intact and remained stable in tumour, blood and urine at 2 h post-injection. The results of SPECT imaging showed that [99mTc]Tc-L1 had significant tumour uptake at 2 h post-injection, but there was still high uptake in abdominal organs such as the liver and kidney, suggesting that this complex needs to be further optimised before being used for tumour hypoxia imaging.

3.
Phys Med Biol ; 68(14)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336207

RESUMO

This paper presents a simulation study to demonstrate that the contrast recovery coefficients (CRC) and detectability of small lesions of a one-meter-long positron emission tomography (PET) scanner can be further enhanced by the integration of high resolution virtual-pinhole (VP) PET devices. The scanner under investigation is a Siemens Biograph Vision Quadra which has an axial field-of-view (FOV) of 106 cm. The VP-PET devices contain two high-resolution flat panel detectors, each composed of 2 × 8 detector modules each of which consists of 32 × 64 lutetium-oxyorthosilicate crystals (1.0 × 1.0 × 10.0 mm3each). Two configurations for the VP-PET device placement were evaluated: (1) place the two flat-panel detectors at the center of the scanner's axial FOV below the patient bed; (2) place one flat-panel detector at the center of the first and the last quarter of the scanner's axial FOV below the patient bed. Sensitivity profiles were measured by moving a point22Na source stepwise across the scanner's FOV axially at different locations. To assess the improvement in CRC and lesion detectability by the VP-PET devices, an elliptical torso phantom (31.6 × 22.8 × 106 cm3) was first imaged by the native scanner then subsequently by the two VP-PET geometry configurations. Spherical lesions (4 mm in diameter) having 5:1 lesion-to-background radioactivity concentration ratio were grouped and placed at nine regions in the phantom to analyze the dependence of the improvement in plane. Average CRCs and their standard deviations of the 7 tumors in each group were computed and the receiver operating characteristic (ROC) curves were drawn to evaluate the improvement in lesion detectability by the VP-PET device over the native long axial PET scanner. The fraction of coincidence events between the inserts and the scanner detectors was 13%-16% (out of the total number of coincidences) for VP-PET configuration 1 and 2, respectively. The VP-PET systems provide higher CRCs for lesions in all regions in the torso, with more significant enhancement at regions closer to the inserts, than the native scanner does. For any given false positive fraction, the VP-PET systems offer higher true positive fraction compared to the native scanner. This work provides a potential solution to further enhance the image resolution of a long axial FOV PET scanner to maximize its lesion detectability afforded by its super high effective sensitivity.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas , Simulação por Computador
4.
Vaccines (Basel) ; 10(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35746502

RESUMO

BACKGROUND: The aim of this study was to investigate the immunogenicity and safety of the enterovirus 71 vaccine (EV71 vaccine) administered alone or simultaneously. METHODS: A multi-center, open-label, randomized controlled trial was performed involving 1080 healthy infants aged 6 months or 8 months from Shandong, Shanxi, Shaanxi, and Hunan provinces. These infants were divided into four simultaneous administration groups and EV71 vaccine separate administration group. Blood samples were collected from the infants before the first vaccination and after the completion of the vaccination. This trial was registered in the Clinical Trials Registry (NCT03519568). RESULTS: A total of 895 were included in the per-protocol analysis. The seroconversion rates of antibodies against EV71 in four simultaneous administration groups (98.44% (189/192), 94.57% (122/129), 99.47% (187/188) and 98.45% (190/193)) were non-inferior to EV71 vaccine separate administration group (97.93% [189/193]) respectively. Fever was the most common adverse event, the pairwise comparison tests showed no difference in the incidence rate of solicited, systemic or local adverse events. Three serious adverse events related to the vaccination were reported. CONCLUSIONS: The evidence of immunogenicity and safety supports that the EV71 vaccine administered simultaneously with vaccines need to be administered during the same period of time recommended in China.

5.
Phys Med Biol ; 66(11)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33892480

RESUMO

This paper presents a novel PET geometry for breast cancer imaging. The scanner consists of a 'stadium' (a rectangle with two semi-circles on opposite sides) shaped ring, along with anterior and posterior panels to provide high sensitivity and high spatial resolution for an imaging field-of-view (FOV) that include both breasts, mediastinum and axilla. We simulated this total-breast PET system using GATE and reconstructed the coincidence events using a GPU-based list-mode image reconstruction implementing maximum likelihood expectation-maximization (ML-EM) algorithm. The rear-panel is made up of a single layer of LSO crystals (3.2 × 3.2 × 20 mm3each), while the 'stadium'-shaped elongated ring and the anterior panel are made with dual-layered LSO crystals (1.6 × 1.6 × 6 mm3each). The energy resolution and coincidence resolving time of all detectors are assumed to be 12% and 250 ps full-width-at-half-maximum, respectively. Various sized simulated lesions (4, 5, 6 mm) having 4:1, 5:1, and 6:1 lesion-to-background radioactivity concentration ratios, mimicking different biological uptakes, were strategically located throughout a volumetric torso phantom. We compared system sensitivity and lesion detectability of the dedicated total-breast PET system to a state-of-the-art clinical whole-body PET scanner. The mean sensitivity of the total-breast PET system is 3.21 times greater than that of a whole-body PET scanner in the breast regions. The total-breast PET system also provides better contrast-recovery coefficients for lesions of all sizes and lesion-to-background ratios in the breast when compared to a reference clinical whole-body PET scanner. Receiver operating characteristics (ROC) study shows the area under the ROC curve is 0.948 and 0.924 for the total-breast system and the whole-body PET scanner, respectively, in the detection of 4 mm diameter lesions with 4:1 lesion-to-background ratio. This study demonstrates our novel geometry can provide an imaging FOV larger than conventional PEM systems to simultaneously image both breasts, chest wall and axillae with significantly improved lesion detectability in the breasts when compared to a whole-body PET scanner.


Assuntos
Mama , Tomografia por Emissão de Pósitrons , Mama/diagnóstico por imagem , Simulação por Computador , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
6.
Adv Mater ; 32(30): e1907927, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32567148

RESUMO

Composed of electrocaloric (EC) ceramics and polymers, polymer composites with high EC performances are considered as promising candidates for next-generation all-solid-state cooling devices. Their mass application is limited by the low EC strength, which requires very high operational voltage to induce appreciable temperature change. Here, an all-scale hierarchical architecture is proposed and demonstrated to achieve high EC strength in poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)-based nanocomposites. On the atomic scale, highly polarizable hierarchical interfaces are induced by incorporating BiFeO3 (BFO) nanoparticles in Ba(Zr0.21 Ti0.79 )O3 (BZT) nanofibers (BFO@BZT_nfs); on the microscopic scale, percolation of the interfaces further raises the polarization of the composite nanofibers; on the mesoscopic scale, orthotropic orientation of BFO@BZT_nfs leads to much enhanced breakdown strength of the nanocomposites. As a result, an ultrahigh EC strength of ≈0.22 K m MV-1 is obtained at an ultralow electric field of 75 MV m-1 in nanocomposites filled with the orthotropic composite nanofibers, which is by far the highest value achieved in polymer nanocomposites at a moderate electric field. Results of high-angle annular dark-field scanning transmission electron microscopy, in situ scanning Kelvin probe microscopy characterization, and phase-field simulations all indicate that the much enhanced EC performances can be attributed to the all-scale hierarchical structures of the nanocomposite.

7.
IEEE Trans Med Imaging ; 39(11): 3268-3277, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31899415

RESUMO

A novel technique, called augmented whole-body scanning via magnifying PET (AWSM-PET), that improves the sensitivity and lesion detectability of a PET scanner for whole-body imaging is proposed and evaluated. A Siemens Biograph Vision PET/CT scanner equipped with one or two high-resolution panel-detectors was simulated to study the effectiveness of AWSM-PET technology. The detector panels are located immediately outside the scanner's axial field-of-view (FOV). A detector panel contains 2 ×8 detector modules each consisting of 32 ×64 LSO crystals ( 1.0 ×1.0 ×10.0 mm3 each). A 22Na point source was stepped across the scanner's FOV axially to measure sensitivity profiles at different locations. An elliptical torso phantom containing 7×9 spherical lesions was imaged at different axial locations to mimic a multi-bed-position whole-body imaging protocol. Receiver operating characteristic (ROC) curves were analyzed to evaluate the improvement in lesion detectability by the AWSM-PET technology. Experimental validation was conducted using an existing flat-panel detector integrated with a Siemens Biograph 40 PET/CT scanner to image a torso phantom containing spherical lesions with diameters ranging from 3.3 to 11.4 mm. The contrast-recovery-coefficient (CRC) of the lesions was evaluated for the scanner with or without the AWSM-PET technology. Monte Carlo simulation shows 36%-42% improvement in system sensitivity by a dual-panel AWSM-PET device. The area under the ROC curve is 0.962 by a native scanner for the detection of 4 mm diameter lesions with 5:1 tumor-to-background activity concentration. It was improved to 0.977 and 0.991 with a single- and dual-panel AWSM-PET system, respectively. Experimental studies showed that the average CRC of 3.3 mm and 4.3 mm diameter tumors were improved from 2.8% and 4.2% to 7.9% and 11.0%, respectively, by a single-panel AWSM-PET device. With a high-sensitivity dual-panel device, the corresponding CRC can be further improved to 11.0% and 15.9%, respectively. The principle of the AWSM-PET technology has been developed and validated. Enhanced system sensitivity, CRC and tumor detectability were demonstrated by Monte Carlo simulations and imaging experiments. This technology may offer a cost-effective path to realize high-resolution whole-body PET imaging clinically.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Imagem Corporal Total , Método de Monte Carlo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons
8.
RSC Adv ; 10(10): 5886-5893, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35497428

RESUMO

Poly(vinylidene fluoride) (PVDF)-based polymers with excellent flexibility and relatively high permittivity are desirable compared to the traditional bulk ceramic in dielectric material applications. However, the low discharge efficiency (<70%) caused by the severe intrinsic dielectric loss of these polymers result in a decrease in their breakdown strength and other problems, which limit their widespread applications. To address these outstanding issues, herein, we used a stacking method to combine poly(methyl methacrylate) (PMMA) with poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) for the synthesis of a series of alternating multilayer films with different layers. Benefitting from the blocking effect of the multilayer structure and excellent insulation performance of PMMA, simultaneous improvements in the breakdown strength and discharge efficiency of the multilayer films were achieved. Compared with the pure polymer films and other multilayer films with different layers, the film with a 9-layer structure exhibited the highest energy storage density of 25.3 J cm-3 and extremely high discharge efficiency of 84% at 728 MV m-1. Moreover, the charge and discharge performance of the other multilayer films were also better than that of P(VDF-HFP). In addition, it was also found that for the multilayer composite films with the same components, the blocking effect was reinforced with an increase in the number of layers, which led to a significant improvement in the breakdown strength. We consider that the multilayer structure can correlate with the dielectric properties of different polymer materials to enhance the energy storage of composite materials, and will provide a promising route to design high dielectric performance devices.

9.
ACS Appl Mater Interfaces ; 11(40): 36560-36570, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508931

RESUMO

Nanoporous holey-graphene (HG) shows potential versatility in several technological fields, especially in biomedical, water filtration, and energy storage applications. Particularly, for ultrahigh electrochemical energy storage applications, HG has shown promise in addressing the issue of low gravimetric and volumetric energy densities by boosting of the ion-transport efficiency in a high-mass-loaded graphene electrode. However, there are no studies showing complete control over the entire pore architecture and density of HG and their effect on high-rate energy storage. Here, we report a unique and cost-effective method for obtaining well-controlled HG, where a copper nanocatalyst assists the predefined porosity tailoring of the HG and leads to an extraordinary high pore density that exceeds 1 × 103 µm-2. The pore architectures of the hierarchical and homogenous pores of HG were realized through a rationally designed nanocatalyst and the annealing procedure in this method. The HG electrode with a high mass loading results in improved supercapacitor performance that is at least 1 order of magnitude higher than conventional graphene flakes (reduced electrochemically exfoliated graphene (rECG)) in areal capacitance (∼100% retention of capacitance until 15 000 cycles), energy density, and power density. The diffusion coefficient of the HG electrode is 1.5-fold higher than that of rECG at a mass loading of 15 mg cm-2, indicating excellent ion-transport efficiency. The excellent ion-transport efficiency of HG is further proved by nearly 4-fold magnitude lowering of its Rion (the ionic resistance in the electrolyte-filled pores) value as compared with rECG when estimated for equivalent high-mass-loaded electrodes. Furthermore, the HG exhibits a packing density that is 2 orders of magnitude higher than rECG, revealing the utility of the maximum electrode mass and possessing higher volumetric capacitance. The perfect tailoring of HG with optimized porosity allows the achievement of high areal capacitance and excellent cycling stability due to the facile ion- and charge-transport at high-mass-loaded electrodes, which could open a new avenue for addressing the long-existing issue of practical application of graphene-based energy storage devices.

10.
Med Phys ; 46(9): 4165-4176, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31315157

RESUMO

PURPOSE: We have developed a second-generation virtual-pinhole (VP) positron emission tomography (PET) device that can position a flat-panel PET detector around a patient's body using a robotic arm to enhance the contrast recovery coefficient (CRC) and detectability of lesions in any region-of-interest using a whole-body PET/computed tomography (CT) scanner. METHODS: We constructed a flat-panel VP-PET device using 32 high-resolution detectors, each containing a 4  ×  4 MPPC array and 16  ×  16 LYSO crystals of 1.0  ×  1.0  ×  3.0 mm3 each. The flat-panel detectors can be positioned around a patient's body anywhere in the imaging field-of-view (FOV) of a Siemens Biograph 40 PET/CT scanner by a robotic arm. New hardware, firmware and software have been developed to support the additional detector signals without compromising a scanner's native functions. We stepped a 22 Na point source across the axial FOV of the scanner to measure the sensitivity profile of the VP-PET device. We also recorded the coincidence events measured by the scanner detectors and by the VP-PET detectors when imaging phantoms of different sizes. To assess the improvement in the CRC of small lesions, we imaged an elliptical torso phantom measuring 316  ×  228  ×  162 mm3 that contains spherical tumors with diameters ranging from 3.3 to 11.4 mm with and without the VP-PET device. Images were reconstructed using a list mode Maximum-Likelihood Estimation-Maximization algorithm implemented on multiple graphics processing units (GPUs) to support the unconventional geometries enabled by a VP-PET system. The mean and standard deviation of the CRC were calculated for tumors of different sizes. Monte Carlo simulation was also conducted to image clusters of lesions in a torso phantom using a PET/CT scanner alone or the same scanner equipped with VP-PET devices. Receiver operating characteristic (ROC) curves were analyzed for three system configurations to evaluate the improvement in lesion detectability by the VP-PET device over the native PET/CT scanner. RESULTS: The repeatability in positioning the flat-panel detectors using a robotic arm is better than 0.15 mm in all three directions. Experimental results show that the average CRC of 3.3, 4.3, and 6.0 mm diameter tumors was 0.82%, 2.90%, and 5.25%, respectively, when measured by the native scanner. The corresponding CRC was 2.73%, 6.21% and 10.13% when imaged by the VP-PET insert device with the flat-panel detector under the torso phantom. These values may be further improved to 4.31%, 9.65% and 18.01% by a future dual-panel VP-PET insert device if DOI detectors are employed to triple its detector efficiency. Monte Carlo simulation results show that the tumor detectability can be improved by a VP-PET device that has a single flat-panel detector. The improvement is greater if the VP-PET device employs a dual-panel design. CONCLUSIONS: We have developed a prototype flat-panel VP-PET device and integrated it with a clinical PET/CT scanner. It significantly enhances the contrast of lesions, especially for those that are borderline detectable by the native scanner, within regions-of-interest specified by users. Simulation demonstrated the enhancement in lesion detectability with the VP-PET device. This technology may become a cost-effective solution for organ-specific imaging tasks.


Assuntos
Meios de Contraste , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Imagem Corporal Total/instrumentação , Processamento de Imagem Assistida por Computador , Método de Monte Carlo
11.
Adv Sci (Weinh) ; 6(6): 1801931, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30937269

RESUMO

Ferroelectric memories are endowed with high data storage density by nanostructure designing, while the robustness is also impaired. For organic ferroelectrics favored by flexible memories, low Curie transition temperature limits their thermal stability. Herein, a ferroelectric random access memory (FeRAM) is demonstrated based on an array of P(VDF-TrFE) lamellae by self-assembly. Written data shows enhanced thermal endurance up to 90 °C and undergoes 12 thermal cycles between 30 and 80 °C with little volatilization. The promoted thermal stability is attributed to pinning effect at interfaces between grain boundaries and lamellae, where charged domain walls and charged defects are coupled. These results provide a strategy for improving robustness of organic flexible FeRAMs, and reveal an attracting coupling effect between different phases of ferroelectric polymer.

12.
Nat Commun ; 10(1): 1843, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015446

RESUMO

Understanding the breakdown mechanisms of polymer-based dielectrics is critical to achieving high-density energy storage. Here a comprehensive phase-field model is developed to investigate the electric, thermal, and mechanical effects in the breakdown process of polymer-based dielectrics. High-throughput simulations are performed for the P(VDF-HFP)-based nanocomposites filled with nanoparticles of different properties. Machine learning is conducted on the database from the high-throughput simulations to produce an analytical expression for the breakdown strength, which is verified by targeted experimental measurements and can be used to semiquantitatively predict the breakdown strength of the P(VDF-HFP)-based nanocomposites. The present work provides fundamental insights to the breakdown mechanisms of polymer nanocomposite dielectrics and establishes a powerful theoretical framework of materials design for optimizing their breakdown strength and thus maximizing their energy storage by screening suitable nanofillers. It can potentially be extended to optimize the performances of other types of materials such as thermoelectrics and solid electrolytes.

13.
Med Phys ; 46(4): 1798-1813, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30667069

RESUMO

PURPOSE: We investigated the feasibility of a novel positron emission tomography (PET) system that provides near real-time feedback to an operator who can interactively scan a patient to optimize image quality. The system should be compact and mobile to support point-of-care (POC) molecular imaging applications. In this study, we present the key technologies required and discuss the potential benefits of such new capability. METHODS: The core of this novel PET technology includes trackable PET detectors and a fully three-dimensional, fast image reconstruction engine implemented on multiple graphics processing units (GPUs) to support dynamically changing geometry by calculating the system matrix on-the-fly using a tube-of-response approach. With near real-time image reconstruction capability, a POC-PET system may comprise a maneuverable front PET detector and a second detector panel which can be stationary or moved synchronously with the front detector such that both panels face the region-of-interest (ROI) with the detector trajectory contoured around a patient's body. We built a proof-of-concept prototype using two planar detectors each consisting of a photomultiplier tube (PMT) optically coupled to an array of 48 × 48 lutetium-yttrium oxyorthosilicate (LYSO) crystals (1.0 × 1.0 × 10.0 mm3 each). Only 38 × 38 crystals in each arrays can be clearly re-solved and used for coincidence detection. One detector was mounted to a robotic arm which can position it at arbitrary locations, and the other detector was mounted on a rotational stage. A cylindrical phantom (102 mm in diameter, 150 mm long) with nine spherical lesions (8:1 tumor-to-background activity concentration ratio) was imaged from 27 sampling angles. List-mode events were reconstructed to form images without or with time-of-flight (TOF) information. We conducted two Monte Carlo simulations using two POC-PET systems. The first one uses the same phantom and detector setup as our experiment, with the detector coincidence re-solving time (CRT) ranging from 100 to 700 ps full-width-at-half-maximum (FWHM). The second study simulates a body-size phantom (316 × 228 × 160 mm3 ) imaged by a larger POC-PET system that has 4 × 6 modules (32 × 32 LYSO crystals/module, four in axial and six in transaxial directions) in the front panel and 3 × 8 modules (16 × 16 LYSO crystals/module, three in axial and eight in transaxial directions) in the back panel. We also evaluated an interactive scanning strategy by progressively increasing the number of data sets used for image reconstruction. The updated images were analyzed based on the number of data sets and the detector CRT. RESULTS: The proof-of-concept prototype re-solves most of the spherical lesions despite a limited number of coincidence events and incomplete sampling. TOF information reduces artifacts in the reconstructed images. Systems with better timing resolution exhibit improved image quality and reduced artifacts. We observed a reconstruction speed of 0.96 × 106 events/s/iteration for 600 × 600 × 224 voxel rectilinear space using four GPUs. A POC-PET system with significantly higher sensitivity can interactively image a body-size object from four angles in less than 7 min. CONCLUSIONS: We have developed GPU-based fast image reconstruction capability to support a PET system with arbitrary and dynamically changing geometry. Using TOF PET detectors, we demonstrated the feasibility of a PET system that can provide timely visual feedback to an operator who can scan a patient interactively to support POC imaging applications.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Sistemas Automatizados de Assistência Junto ao Leito , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Simulação por Computador , Estudos de Viabilidade , Humanos , Método de Monte Carlo
14.
RSC Adv ; 9(62): 35990-35997, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35540594

RESUMO

Polymer nanocomposite dielectrics, composed of polymer matrices with high breakdown strength and nanofillers with high dielectric constant, can achieve outstanding energy density. However, the great difference of intrinsic surface properties between the polymer and nanofillers will lead to poor compatibility and thus damage the dielectric properties of the composites. Introducing a transition layer to the filler surface can effectively reduce the degree of mismatch. In this work, we use a "direct in situ polymerization" method to synthesize core-shell BaTiO3 nanoparticles (BTO_nps) with three types of stable and dense fluoro-polymer shells, e.g., poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA), poly(2,2,3,4,4,4-hexafluorobutyl methacrylate) (PHFBMA), and poly(1H,1H,7H-dodecafluoroheptyl methacrylate) (PDFHMA), and individually disperse them into the poly(vinylidene fluoride-co-hexafluoro propylene) (P(VDF-HFP)) matrix. Benefitting from the good interaction between the fluorine-containing segments in the shell polymer and the matrix segments, the dispersion of core-shell BTO_nps and their compatibility with P(VDF-HFP) are improved, which leads to a significant improvement in the dielectric properties of the nanocomposites. The results show that BTO@PDFHMA/P(VDF-HFP) composite exhibits an ultrahigh energy density of 16.8 J cm-3 at 609 MV m-1 with particle loading amount of 15 wt%, compared to 11.5 J cm-3 at 492 MV m-1 for a conventional solution blended BTO/P(VDF-HFP) composite. Meanwhile, the discharge efficiency is enhanced from ∼62 to ∼78%. It is elucidated that the core-shell strategy can achieve improved particle dispersion and dielectric properties. We consider that this simple method can well achieve the preparation of core-shell structures in dielectric nanocomposites.

15.
Adv Mater ; 31(5): e1801949, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30537017

RESUMO

The electrocaloric effect (ECE) refers to reversible thermal changes of a polarizable material upon the application or removal of electric fields. Without a compressor or cooling agents, all-solid-state electrocaloric (EC) refrigeration systems are environmentally benign, highly compact, and of very high energy efficiency. Relaxor ferroelectric ceramics and polymers are promising candidates as EC materials. Here, synergistic efforts are made by composing relaxor Ba(Zr0.21 Ti0.79 )O3 nanofibers with P(VDF-TrFE-CFE) to make relaxor-relaxor-type polymer nanocomposites. The ECEs of the nanocomposites are directly measured and these relaxor nanocomposites exhibit, so far, the highest EC temperature change at a modest electric field, along with high thermal stability within a broad temperature range span to room temperature. The superior EC performance is attributed to the interfacial coupling between dipoles across the filler/polymer interfaces. The thermodynamics and kinetics of interfacial coupling are investigated in situ by piezoresponse force microscopy while the real-time evolution of interfacial coupling is simulated and visualized by phase-field modeling.

16.
Adv Mater ; 30(16): e1707269, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29534313

RESUMO

Manipulating microstructures of composites in three dimensions has been a long standing challenge. An approach is proposed and demonstrated to fabricate artificial nanocomposites by controlling the 3D distribution and orientation of oxide nanoparticles in a polymer matrix. In addition to possessing much enhanced mechanical properties, these nanocomposites can sustain extremely high voltages up to ≈10 kV, exhibiting high dielectric breakdown strength and low leakage current. These nanocomposites show great promise in resolving the paradox between dielectric constant and breakdown strength, leading to ultrahigh electrical energy density (over 2000% higher than that of the bench-mark polymer dielectrics) and discharge efficiency. This approach opens up a new avenue for the design and modulation of nanocomposites. It is adaptable to the roll-to-roll fabrication process and could be employed as a general technique for the mass production of composites with intricate nanostructures, which is otherwise not possible using conventional polymer processing techniques.

17.
Sci Bull (Beijing) ; 63(6): 356-361, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658872

RESUMO

Electrocaloric effect (ECE) is much promising to realize high efficiency and environment friendly solution in solid cooling devices. Relaxor ferroelectrics are good candidates for the materials with high electrocaloric cooling power. In this paper, relaxor ferroelectric Ba(ZrxTi1-x)O3 (BZT, x = 0.2, 0.21, 0.22, 0.23) ceramics were prepared with their temperature change (ΔT) induced by the ECE and electrocaloric strength (ΔT/E) measured within broad temperature range. It is found that the BZT21 (x = 0.21) exhibits the largest ΔT of ∼4.67 K and a high ΔT/E value of ∼0.46 km/MV at 9.9 MV/m and 25 °C. BZT21 also exhibits apparent relaxor ferroelectric response, showing a very broad EC peak in the temperature interval between 15 °C and 50 °C. Moreover, the relationship between EC properties and relaxor features was analyzed by piezoresponse force microscopy test. The results reveal that more dispersed phase structures induce additional configurational entropy, which is in favor for the enhanced EC performance. The interplay and compromise between the kinetic and thermodynamic mechanisms of domain switching determines the optimal composition for the EC performances of the BZT ceramics.

18.
ACS Appl Mater Interfaces ; 9(35): 29717-29731, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28809466

RESUMO

Polymer nanocomposite dielectrics with high energy density and low loss are major enablers for a number of applications in modern electronic and electrical industry. Conventional fabrication of nanocomposites by solution routes involves equilibrium process, which is slow and results in structural imperfections, hence high leakage current and compromised reliability of the nanocomposites. We propose and demonstrate that a nonequilibrium process, which synergistically integrates electrospinning, hot-pressing and thermal quenching, is capable of yielding nanocomposites of very high quality. In the nonequilibrium nanocomposites of poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and BaTiO3 nanoparticles (BTO_nps), an ultrahigh Weibull modulus ß of ∼30 is achieved, which is comparable to the quality of the bench-mark biaxially oriented polypropylene (BOPP) fabricated with melt-extrusion process by much more sophisticated and expensive industrial apparatus. Favorable phase composition and small crystalline size are also induced by the nonequilibrium process, which leads to concomitant enhancement of electric displacement and breakdown strength of the nanocomposite hence a high energy density of ∼21 J/cm3. Study on the polarization behavior and phase transformation at high electric field indicates that BTO_nps could facilitate the phase transformation from α- to ß-polymorph at low electric field.

19.
ACS Appl Mater Interfaces ; 8(40): 27236-27242, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27668967

RESUMO

Polymers with high dielectric strength and favorable flexibility have been considered promising materials for dielectrics and energy storage applications, while the achievable energy density (Ue) of polymer is rather limited by the intrinsic low dielectric constant and ferroelectric hysteresis. Polyvinylidene fluoride-trifluoroethylene-chlorofluoroethylene (P(VDF-TrFE-CFE)) with ultrahigh εr of >50 is considered promising in achieving high Ue of polymer dielectrics. However, P(VDF-TrFE-CFE) only exhibits moderate Ue due to the early saturation of electrical polarization at low electric field. In this contribution, we show that, by blending P(VDF-TrFE-CFE) with polyvinylidene fluoride (PVDF), the early saturation of P(VDF-TrFE-CFE) is substantially suppressed, giving rise to concomitant enhancement of dielectric permittivity and breakdown strength. An ultrahigh energy density of 19.6 J/cm3 is thus achieved at ∼640 kV/mm, which is 1600% greater than Ue of the benchmark biaxially oriented polypropylene (BOPP, 1.2 J/cm3 at 640 kV/mm). Results of phase field simulations reveal that the interfaces between PVDF and P(VDF-TrFE-CFE) play a critical role by not only suppressing early saturation of electrical polarization in P(VDF-TrFE-CFE) but also inducing additional interfacial polarization. Binary phase diagram of P(VDF-TrFE-CFE)/PVDF blends is also systematically explored with their dielectric and energy storage behavior studied.

20.
Adv Mater ; 28(10): 2055-61, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26766020

RESUMO

Large-aspect-ratio composite nanofibers with interior hierarchical interfaces are employed to break the adverse coupling of electric displacement and breakdown strength in flexible poly(vinylidene fluoride-hexafluoropropylene) nanocomposite films, a small loading of 3 vol% BaTiO3@TiO2 nanofibers gives rise to the highestenergy density (≈31.2 J cm(-3)) ever achieved in polymer nanocomposites dielectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA