Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Hazard Mater ; 470: 134201, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579585

RESUMO

From the onset of coronavirus disease (COVID-19) pandemic, there are concerns regarding the disease spread and environmental pollution of biohazard since studies on genetic engineering flourish and numerous genetic materials were used such as the nucleic acid test of the severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this work, we studied genetic material pollution in an institute during a development cycle of plasmid, one of typical genetic materials, with typical laboratory settings. The pollution source, transmission routes, and pollution levels in laboratory environment were examined. The Real-Time quantitative- Polymerase Chain Reaction results of all environmental mediums (surface, aerosol, and liquid) showed that a targeted DNA segment occurred along with routine experimental operations. Among the 79 surface and air samples collected in the genetic material operation, half of the environment samples (38 of 79) are positive for nucleic acid pollution. Persistent nucleic acid contaminations were observed in all tested laboratories and spread in the public area (hallway). The highest concentration for liquid and surface samples were 1.92 × 108 copies/uL and 5.22 × 107 copies/cm2, respectively. Significant amounts of the targeted gene (with a mean value of 74 copies/L) were detected in the indoor air of laboratories utilizing centrifuge devices, shaking tables, and cell homogenizers. Spills and improper disposal of plasmid products were primary sources of pollution. The importance of establishing designated experimental zones, employing advanced biosafety cabinets, and implementing highly efficient cleaning systems in laboratories with lower biosafety levels is underscored. SYNOPSIS: STATEMENT. Persistent environmental pollutions of genetic materials are introduced by typical experiments in laboratories with low biosafety level.


Assuntos
Laboratórios , Humanos , SARS-CoV-2/genética , Plasmídeos/genética , COVID-19/transmissão , Poluição Ambiental/análise , Monitoramento Ambiental
2.
Environ Sci Technol ; 58(12): 5442-5452, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478878

RESUMO

New particle formation and growth greatly influence air quality and the global climate. Recent CERN Cosmics Leaving OUtdoor Droplets (CLOUD) chamber experiments proposed that in cold urban atmospheres with highly supersaturated HNO3 and NH3, newly formed sub-10 nm nanoparticles can grow rapidly (up to 1000 nm h-1). Here, we present direct observational evidence that in winter Beijing with persistent highly supersaturated HNO3 and NH3, nitrate contributed less than ∼14% of the 8-40 nm nanoparticle composition, and overall growth rates were only ∼0.8-5 nm h-1. To explain the observed growth rates and particulate nitrate fraction, the effective mass accommodation coefficient of HNO3 (αHNO3) on the nanoparticles in urban Beijing needs to be 2-4 orders of magnitude lower than those in the CLOUD chamber. We propose that the inefficient uptake of HNO3 on nanoparticles is mainly due to the much higher particulate organic fraction and lower relative humidity in urban Beijing. To quantitatively reproduce the observed growth, we show that an inhomogeneous "inorganic core-organic shell" nanoparticle morphology might exist for nanoparticles in Beijing. This study emphasized that growth for nanoparticles down to sub-10 nm was largely influenced by their composition, which was previously ignored and should be considered in future studies on nanoparticle growth.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Nitratos , Monitoramento Ambiental , Poluição do Ar/análise , Compostos Orgânicos , Tamanho da Partícula
3.
Environ Sci Technol ; 58(2): 1223-1235, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38117938

RESUMO

Nanoparticle growth influences atmospheric particles' climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics' contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations <0.3 µg/m3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32-46%) as 4-40 nm particles grow. Alkanes also contribute 19-35% of GRs, while biogenic volatile organic compounds contribute minimally (<13%). Our model helps assess the climatic impacts of particles and predict future changes.


Assuntos
Compostos Orgânicos Voláteis , Atmosfera/química , Gases , Alcanos , Oxirredução , Aerossóis
4.
Lancet Reg Health West Pac ; 40: 100965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38116500

RESUMO

China's health gains over the past decades face potential reversals if climate change adaptation is not prioritized. China's temperature rise surpasses the global average due to urban heat islands and ecological changes, and demands urgent actions to safeguard public health. Effective adaptation need to consider China's urbanization trends, underlying non-communicable diseases, an aging population, and future pandemic threats. Climate change adaptation initiatives and strategies include urban green space, healthy indoor environments, spatial planning for cities, advance location-specific early warning systems for extreme weather events, and a holistic approach for linking carbon neutrality to health co-benefits. Innovation and technology uptake is a crucial opportunity. China's successful climate adaptation can foster international collaboration regionally and beyond.

5.
Nat Commun ; 14(1): 6491, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838777

RESUMO

Protecting human health from fine particulate matter (PM) pollution is the ambitious goal of clean air actions, but current control strategies  largely ignore the role of source-specific PM toxicity. Here, we proposed health-oriented control strategies by integrating the unequal toxic potencies of the most polluting industrial PMs. Iron and steel industry (ISI)-emitted PM2.5 exhibit about one order of magnitude higher toxic potency than those of cement and power industries. Compared with the current mass-based control strategy (prioritizing implementation of ultralow emission standards in the power sector), the proposed health-oriented control strategy (priority control of the ISI sector) could generate 5.4 times higher reduction in population-weighted toxic potency-adjusted PM2.5 exposure among polluting industries in China. Furthermore, the marginal abatement cost per unit of toxic potency-adjusted mass of ISI-emitted PM2.5 is only a quarter of that of the other two sectors under ultralow emission scenarios. We highlight that a health-oriented air pollution control strategy is urgently required to achieve cost-effective reductions in particulate exposure risks.

6.
Chem Soc Rev ; 52(15): 5088-5134, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37439791

RESUMO

Sensors, the underlying technology that supports the Internet of Things, are undergoing multi-disciplinary integration development to constantly improve the efficiency of human production and life. Simultaneously, the application scenarios in emerging fields such as medical diagnosis, environmental monitoring and industrial safety put forward higher requirements for sensing capabilities. Over the last decade, single-atom catalysts (SACs) have attracted tremendous attention in fields such as environment and energy due to their high atom utilization efficiencies, controllable active sites, tailorable coordination environments and structural/chemical stability. These extraordinary characteristics extend the sensitivity and selectivity of sensors beyond their current limitations. Here, we start with the working principles of SAC-based sensors, and summarize the relationship between sensor performance and intrinsic properties of SACs, followed by an overview of the design strategy development. We then review the recent advances in SAC-based sensors in different fields and highlight the future opportunities and challenges in their exciting applications.

7.
Nat Commun ; 14(1): 2703, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164951

RESUMO

Black carbon (BC) plays an important role in the climate system because of its strong warming effect, yet the magnitude of this effect is highly uncertain owing to the complex mixing state of aerosols. Here we build a unified theoretical framework to describe BC's mixing states, linking dynamic processes to BC coating thickness distribution, and show its self-similarity for sites in diverse environments. The size distribution of BC-containing particles is found to follow a universal law and is independent of BC core size. A new mixing state module is established based on this finding and successfully applied in global and regional models, which increases the accuracy of aerosol climate effect estimations. Our theoretical framework links observations with model simulations in both mixing state description and light absorption quantification.

9.
Sci Total Environ ; 868: 161635, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36657674

RESUMO

Secondary organic aerosol (SOA) composes a substantial fraction of atmospheric particles, yet the formation and aging mechanism of SOA remains unclear. Here we investigate the initial oxidation of primary organic aerosol (POA) and further aging of SOA in winter Beijing by using aerosol mass spectrometer (AMS) measurements along with offline molecular tracer analysis. Multilinear engine (ME-2) source apportionment was conducted to capture the characteristic of source-related SOA, and connect them with specific POA. Our results show that urban cooking and fossil fuel burning sources contribute significantly (17 % and 20 %) to total organic aerosol (OA) in winter Beijing. Molecular tracer analysis by two-dimensional gas chromatography-time-of-flight mass spectrometer (GC × GC-ToF-MS) reveals that cooking SOA (CSOA) is produced through both photooxidation and aqueous-phase processing, while less oxidized SOA (LO-SOA) is the photooxidation product of fossil fuel burning OA (FFOA) and may experience aqueous-phase aging to form more-oxidized oxygenated OA (MO-OOA). Furthermore, CHOm/z 69 and CHOm/z 85 are mass spectral tracers indicating the initial photooxidation, while CHO2+ and C2H2O2+ imply further aqueous-phase aging of OA. Tracer analysis indicates that the formation of diketones is involved in the initial photooxidation of POA, while the formation of glyoxal and diacids is involved in the further aqueous-phase aging of SOA.

10.
Cell Rep Med ; 4(2): 100918, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36702124

RESUMO

With the widespread vaccinations against coronavirus disease 2019 (COVID-19), we are witnessing gradually waning neutralizing antibodies and increasing cases of breakthrough infections, necessitating the development of drugs aside from vaccines, particularly ones that can be administered outside of hospitals. Here, we present two cross-reactive nanobodies (R14 and S43) and their multivalent derivatives, including decameric ones (fused to the immunoglobulin M [IgM] Fc) that maintain potent neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after aerosolization and display not only pan-SARS-CoV-2 but also varied pan-sarbecovirus activities. Through respiratory administration to mice, monovalent and decameric R14 significantly reduce the lung viral RNAs at low dose and display potent pre- and post-exposure protection. Furthermore, structural studies reveal the neutralizing mechanisms of R14 and S43 and the multiple inhibition effects that the multivalent derivatives exert. Our work demonstrates promising convenient drug candidates via respiratory administration against SARS-CoV-2 infection, which can contribute to containing the COVID-19 pandemic.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Neutralizantes , Fragmentos Fc das Imunoglobulinas
11.
J Environ Sci (China) ; 123: 183-202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521983

RESUMO

Atmospheric nanoparticles are crucial components contributing to fine particulate matter (PM2.5), and therefore have significant effects on visibility, climate, and human health. Due to the unique role of atmospheric nanoparticles during the evolution process from gas-phase molecules to larger particles, a number of sophisticated experimental techniques have been developed and employed for online monitoring and characterization of the physical and chemical properties of atmospheric nanoparticles, helping us to better understand the formation and growth of new particles. In this paper, we firstly review these state-of-the-art techniques for investigating the formation and growth of atmospheric nanoparticles (e.g., the gas-phase precursor species, molecular clusters, physicochemical properties, and chemical composition). Secondly, we present findings from recent field studies on the formation and growth of atmospheric nanoparticles, utilizing several advanced techniques. Furthermore, perspectives are proposed for technique development and improvements in measuring atmospheric nanoparticles.


Assuntos
Poluentes Atmosféricos , Nanopartículas , Humanos , Material Particulado/análise , Nanopartículas/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Tamanho da Partícula
12.
J Environ Sci (China) ; 123: 203-211, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521984

RESUMO

China has established the largest clean coal-fired power generation system in the world by accomplishing the technological transformation of coal-fired power plants (CFPPs) to achieve ultra-low emission. The potential for further particulate matter (PM) emission reduction to achieve near-zero emission for CFPPs has become a hotspot issue. In this study, PM emission from some ultra-low emission CFPPs adopting advanced air pollutant control technologies in China was reviewed. The results revealed that the average filterable particulate matter (FPM) concentration, measured as the total particulate matter (TPM) according to the current national monitoring standard, was (1.67±0.86) mg/m3, which could fully achieve the ultra-low emission standard for key regions (5 mg/m3), but that achieving the near-zero emission standard was difficult (1 mg/m3). However, the condensable particulate matter (CPM), with an average concentration of (1.06±1.28) mg/m3, was generally ignored during monitoring, which led to about 38.7% underestimation of the TPM. Even considering both FPM and CPM, the TPM emission from current CFPPs would contribute to less than 5% of atmospheric PM2.5 concentrations in the key cities and regions in China. Therefore, further reduction in FPM emission proposed by the near-zero emission plan of CFPPs may have less environmental benefit than emission control of other anthropogenic sources. However, it is suggested that the management of CPM emission should be strengthened, and a national standard for CPM emission monitoring based on the indirect dilution method should be established for CFPPs. Those measurements are helpful for optimal operation of air pollutant control devices and continuously promoting further emission reduction.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Centrais Elétricas , Poluentes Atmosféricos/análise , Carvão Mineral , China , Monitoramento Ambiental
13.
Sci Total Environ ; 855: 158872, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36122727

RESUMO

The elusive sources of air pollution have hampered effective control across all sectors, with long-term consequences for the greenhouse effect and human health. Multiple monitoring systems have been highly desired for locating the sources. However, when faced with extensive sources, diverse air environments and meteorological conditions, the low spatiotemporal resolution, poor reliability and high cost of existing monitors were significant obstacles to their applications. Extending our previous demonstration of sensitive and reliable electrochemical sensors, we here present a machine-learning-assisted sensor arrays for monitoring typical volatile organic compounds (VOCs), which shows the consistent response with gas chromatography-mass spectrometry in the actual air environment. As a proof-of-concept, a low-cost and high-resolution VOC network of 152 sets of monitors across ~55 km2 of mixed-used land is established in southwest Beijing. Benefiting from the strong reliability, the pollution sources are revealed by the VOC network and supported by the joint mobile sampling of a vehicle-mounted gas chromatography-mass spectrometry system. With the sustained help of the network, the sources polluted by the local industrial facilities, traffic, and restaurants are effectively site-specific abatement by the local authorities and enterprises during the next half-year. Our findings open up a promising path toward more effective tracing of regional pollution sources, as well as accelerate the long-term transformation of industry and cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Reprodutibilidade dos Testes , Monitoramento Ambiental/métodos , Poluição do Ar/análise , China , Ozônio/análise
14.
Opt Express ; 31(26): 42961-42975, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178401

RESUMO

A double key (DK) real-time update and hybrid five-dimensional (5-D) hyperchaotic deoxyribonucleic acid (DNA) dynamic encryption scheme is proposed, which can ensure the security in the orthogonal frequency division multiplexing passive optical network (OFDM-PON). Chaotic sequences for DNA dynamic encryption are produced using a four-dimensional (4-D) hyperchaotic Lü system and a one-dimensional (1-D) logistic map. In this scheme, the DK consists of an external key set, which is stored locally, and an internal key, which is associated with the plaintext and external key. In addition, a pilot cluster is used as the carrier of key transmission and key embedding is achieved by converting key to phase information of the pilot. To verify the feasibility of the scheme, a simulation validation is performed on a 46.5Gb/s 16 quadrature amplitude modulation (QAM) coherent OFDM-PON system transmitted over an 80 km transmission distance. The results show that the proposed scheme can improve the security performance of OFDM-PON at a low OSNR cost of 0.3 dB and the key space is expanded to (8.514 × 10102)S. When the correlation redundancy (CR) G⩾7, the 0 bit error rate (BER) of key can be achieved and the key can be updated and distributed in real-time without occupying additional secure channels.

15.
Environ Sci Technol ; 56(24): 17545-17555, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36441962

RESUMO

Alkaline gases, including NH3, C1-3-amines, C1-3-amides, and C1-3-imines, were measured in situ using a water cluster-CIMS in urban Beijing during the wintertime of 2018, with a campaign average of 2.8 ± 2.0 ppbv, 5.2 ± 4.3, 101.1 ± 94.5, and 5.2 ± 5.4 pptv, respectively. Source apportionment analysis constrained by emission profiles of in-use motor vehicles was performed using a SoFi-PMF software package, and five emission sources were identified as gasoline-powered vehicles (GV), diesel-powered vehicles (DV), septic system emission (SS), soil emission (SE), and combustion-related sources (CS). SS was the dominant NH3 source (60.0%), followed by DV (18.6%), SE (13.1%), CS (4.3%), and GV (4.0%). GV and DV were responsible for 69.9 and 85.2% of C1- and C2-amines emissions, respectively. Most of the C3-amines were emitted from nonmotor vehicular sources (SS = 61.3%; SE = 17.8%; CS = 9.1%). DV accounted for 71.9 and 34.1% of C1- and C2-amides emissions, respectively. CS was mainly comprised of amides and imines, likely originating from the pyrolysis of nitrogen-containing compounds. Our results suggested that motor vehicle exhausts can not only contribute to criteria air pollutants emission but also promote new particle formation, which has not been well recognized and considered in current regulations. Urban residential septic system was the predominant contributor to background NH3. Enhanced NH3 emissions from soil and combustion-related sources were the major cause of PM2.5 buildup during the haze events. Combustion-related sources, together with motor vehicles, were responsible for most of the observed amides and imines and may be of public health concern within the vicinity of these sources.


Assuntos
Poluentes Atmosféricos , Gases , Pequim , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Amidas , Iminas , Aminas , Monitoramento Ambiental , Material Particulado/análise , China
16.
Natl Sci Rev ; 9(10): nwac137, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36196118

RESUMO

Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration, cloud formation and hence the climate. The clustering of acid and base molecules is a major mechanism driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid-base cluster composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high formation rate of new particles. Here we present strong evidence for the existence of base molecules such as amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4 clusters. The proposed mechanism is very consistent with measured new particle formation in urban Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines, even at low concentrations and when undetected in the smallest clusters, can be crucial to particle formation in the planetary boundary layer.

17.
Ecotoxicol Environ Saf ; 243: 114023, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030686

RESUMO

Ultrafine particles (UFPs) usually explosive growth during new particle formation (NPF) events. However, the risk of exposure to UFPs on NPF days has been ignored due to the prevalence of mass-based air quality standards. In this study, the daily deposited doses, i.e., the daily deposited particle number dose (DPNd), mass dose (DPMd), and surface area dose (DPSd), of ambient particles in the human respiratory tract in Beijing were evaluated based on the particle number size distribution (3 nm-10 µm) from June 2018 to May 2019 utilizing a Multiple-Path Particle Dosimetry Model (MPPD) after the hygroscopic growth of particles in the respiratory tract had been accounted for. Our observations showed a high frequency (72.6%) of NPF on excellent air quality days, with daily mean PM2.5 concentrations less than 35 µg m-3. The daily DPNd on excellent air quality days was comparable with that on polluted days, although the DPMd on excellent air quality days was as low as 15.6% of that on polluted days. The DPNd on NPF days was ~1.3 times that on non-NPF days. The DPNd in respiratory tract regions decreased in the order: tracheobronchial (TB) > pulmonary (PUL) > extrathoracic (ET) on NPF days, while it was PUL > TB > ET on non-NPF days. The number of deposited nucleation mode particles, which were deposited mainly in the TB region (45%), was 2 times higher on NPF days than that on non-NPF days. Our results demonstrated that the deposition potential due to UFPs in terms of particle number concentrations is high in Beijing regardless of the aerosol mass concentration. More toxicological studies related to UFPs on NPF days, especially those targeting tracheobronchial and pulmonary impairment, are required in the future.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Pequim , Monitoramento Ambiental , Humanos , Pulmão/química , Tamanho da Partícula , Material Particulado/análise
18.
Atmos Chem Phys ; 22(8): 5147-5156, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36033648

RESUMO

Airborne aerosols reduce surface solar radiation through light scattering and absorption (aerosol direct effects, ADEs), influence regional meteorology, and further affect atmospheric chemical reactions and aerosol concentrations. The inhibition of turbulence and the strengthened atmospheric stability induced by ADEs increases surface primary aerosol concentration, but the pathway of ADE impacts on secondary aerosol is still unclear. In this study, the online coupled meteorological and chemistry model (WRF-CMAQ; Weather Research and Forecasting-Community Multiscale Air Quality) with integrated process analysis was applied to explore how ADEs affect secondary aerosol formation through changes in atmospheric dynamics and photolysis processes. The meteorological condition and air quality in the Jing-Jin-Ji area (denoted JJJ, including Beijing, Tianjin, and Hebei Province in China) in January and July 2013 were simulated to represent winter and summer conditions, respectively. Our results show that ADEs through the photolysis pathway inhibit sulfate formation during winter in the JJJ region and promote sulfate formation in July. The differences are attributed to the alteration of effective actinic flux affected by single-scattering albedo (SSA). ADEs through the dynamics pathway act as an equally or even more important route compared with the photolysis pathway in affecting secondary aerosol concentration in both summer and winter. ADEs through dynamics traps formed sulfate within the planetary boundary layer (PBL) which increases sulfate concentration in winter. Meanwhile, the impact of ADEs through dynamics is mainly reflected in the increase of gaseous-precursor concentrations within the PBL which enhances secondary aerosol formation in summer. For nitrate, reduced upward transport of precursors restrains the formation at high altitude and eventually lowers the nitrate concentration within the PBL in winter, while such weakened vertical transport of precursors increases nitrate concentration within the PBL in summer, since nitrate is mainly formed near the surface ground.

19.
Environ Sci Atmos ; 2(3): 352-361, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35694136

RESUMO

We investigated the contribution of atmospheric new particle formation (NPF) and subsequent growth of the newly formed particles, characterized by high concentrations of fine particulate matter (PM2.5). In addition to having adverse effects on visibility and human health, these haze particles may act as cloud condensation nuclei, having potentially large influences on clouds and precipitation. Using atmospheric observations performed in 2019 in Beijing, a polluted megacity in China, we showed that the variability of growth rates (GR) of particles originating from NPF depend only weakly on low-volatile vapor - highly oxidated organic molecules (HOMs) and sulphuric acid - concentrations and have no apparent connection with the strength of NPF or the level of background pollution. We then constrained aerosol dynamic model simulations with these observations. We showed that under conditions typical for the Beijing atmosphere, NPF is capable of contributing with more than 100 µg m-3 to the PM2.5 mass concentration and simultaneously >103 cm-3 to the haze particle (diameter > 100 nm) number concentration. Our simulations reveal that the PM2.5 mass concentration originating from NPF, strength of NPF, particle growth rate and pre-existing background particle population are all connected with each other. Concerning the PM pollution control, our results indicate that reducing primary particle emissions might not result in an effective enough decrease in total PM2.5 mass concentrations until a reduction in emissions of precursor compounds for NPF and subsequent particle growth is imposed.

20.
Environ Sci Technol ; 56(14): 9936-9946, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35749221

RESUMO

Atmospheric new particle formation significantly affects global climate and air quality after newly formed particles grow above ∼50 nm. In polluted urban atmospheres with 1-3 orders of magnitude higher new particle formation rates than those in clean atmospheres, particle growth rates are comparable or even lower for reasons that were previously unclear. Here, we address the slow growth in urban Beijing with advanced measurements of the size-resolved molecular composition of nanoparticles using the thermal desorption chemical ionization mass spectrometer and the gas precursors using the nitrate CI-APi-ToF. A particle growth model combining condensational growth and particle-phase acid-base chemistry was developed to explore the growth mechanisms. The composition of 8-40 nm particles during new particle formation events in urban Beijing is dominated by organics (∼80%) and sulfate (∼13%), and the remainder is from base compounds, nitrate, and chloride. With the increase in particle sizes, the fraction of sulfate decreases, while that of the slow-desorbed organics, organic acids, and nitrate increases. The simulated size-resolved composition and growth rates are consistent with the measured results in most cases, and they both indicate that the condensational growth of organic vapors and H2SO4 is the major growth pathway and the particle-phase acid-base reactions play a minor role. In comparison to the high concentrations of gaseous sulfuric acid and amines that cause high formation rates, the concentration of condensable organic vapors is comparably lower under the high NOx levels, while those of the relatively high-volatility nitrogen-containing oxidation products are higher. The insufficient condensable organic vapors lead to slow growth, which further causes low survival of the newly formed particles in urban environments. Thus, the low growth rates, to some extent, counteract the impact of the high formation rates on air quality and global climate in urban environments.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Gases , Nitratos , Compostos Orgânicos , Tamanho da Partícula , Material Particulado/análise , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA