Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.424
Filtrar
1.
Quant Imaging Med Surg ; 14(5): 3619-3627, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720849

RESUMO

Background: Cardiac ultrasound is one of the most important examinations in cardiovascular medicine, but the technical requirements for the operator are relatively high, which to some extent affects the scope of its use. This study was dedicated to investigating the agreement of ejection fraction between coronary computed tomography (CT) and cardiac ultrasound and diagnostic performance in evaluating the clinical diagnosis of patients with chronic heart failure. Methods: We conducted a single-center-based retrospective study including 343 consecutive patients enrolled between January 2019 to April 2020, all of whom presented with suspected symptoms of heart failure within one month. All enrolled cases performed cardiac ultrasound and coronary CT scans. The CT images were analyzed using accurate left ventricle (AccuLV) artificial intelligence (AI) software to calculate the ejection fraction-computed tomography (EF-CT) and it was compared with the ejection fraction (EF) obtained based on ultrasound. Cardiac insufficiency was determined if the EF measured by ultrasound was below 50%. Diagnostic performance analysis, correlation analysis and Bland-Altman plot were used to compare agreement between EF-CT and CT. Results: Of the 319 successfully performed patients, 220 (69%) were identified as cardiac insufficiency. Quantitative consistency analysis showed a good correlation between EF-CT and EF values in all cases (R square =0.704, r=0.837). Bland-Altman analysis showed mean bias of 6.6%, mean percentage error of 27.5% and 95% limit of agreement of -17% to 30% between EF and EF-CT. The results of the qualitative diagnostic study showed that the sensitivity and specificity of EF measured by coronary CT reached a high level of 91% [95% confidence interval (CI): 86-94%], and the positive diagnostic value was up to 96% (95% CI: 92-98%). Conclusions: The EF-CT and EF have excellent agreement, and AccuLV-based AI left ventricular function analysis software perhaps can be used as a clinical diagnostic reference.

2.
J Phys Chem Lett ; : 5445-5451, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747537

RESUMO

The catalytic activity of transition-metal-based atomically dispersed catalysts is closely related to the spin states. Manipulating the spin state of metal active centers could directly adjust the d orbital occupancy and optimize the adsorption behavior and electron transfer of the intermediates and transition metals, which would enhance the catalytic activity. We summarize the means of manipulating spin states and the spin-related catalytic descriptors. In future work, we will build a quantifiable and accurate prediction intelligent model through artificial intelligence (AI) and machine learning tools. Furthermore, we will develop new spin regulation methods to carry out the directional regulation of atomically dispersed catalysts through this model, providing new insight into the rational design of transition-metal-based atomically dispersed catalysts through spin manipulation.

3.
Biomol Biomed ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38747892

RESUMO

Dysregulation of glycolysis is frequently linked to aggressive tumor activity in colorectal cancer (CRC). Although serine peptidase inhibitor, Kazal type 4 (SPINK4) has been linked to CRC, its exact linkage to glycolytic processes and gene expression remains unclear. Differentially expressed genes (DEGs) were screened from two CRC-related datasets (GSE32323 and GSE141174), followed by expression and prognostic analysis of SPINK4. In vitro techniques such as flow cytometry, western blotting, transwell assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to assess SPINK4 expression in CRC cells. Its effects on apoptosis, glycolysis, and the cell cycle were also investigated. Finally, the impact of SPINK4 overexpression on tumor development was assessed using a xenograft model, while histological and immunohistochemical analyses characterized SPINK4 expression patterns in CRC tissues. SPINK4 expression was downregulated in CRC, correlating with poor patient prognosis. In vitro assays confirmed that overexpression of SPINK4 reduced CRC cell proliferation, invasion, and migration, while its knockdown promoted these processes and caused G1 arrest. SPINK4 also regulated apoptosis by altering caspase activation and Bcl-2 expression. Besides, SPINK4 overexpression altered glycolytic activity, reduced 2-Deoxy-D-glucose (2-DG) absorption, and controlled critical glycolytic enzymes, resulting in alterations in metabolic pathways, whereas SPINK4 knockdown reversed this effect. SPINK4 overexpression significantly reduced tumor volume in vivo, indicating its inhibitory role in carcinogenesis. Moreover, high expression of SPINK4, hexokinase 2 (HK2), glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and pyruvate kinase M2 (PKM2) was observed in CRC tissues. As a key inhibitor of glycolytic metabolism in CRC, SPINK4 promises metabolic intervention in CRC therapy due to its impact on tumor growth and cell proliferation.

4.
J Hazard Mater ; 473: 134647, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762986

RESUMO

Microbially-driven soil formation process is an emerging technology for the ecological rehabilitation of alkaline tailings. However, the dominant microorganisms and their specific roles in soil formation processes remain unknown. Herein, a 1-year field-scale experiment was applied to demonstrate the effect of nitrogen input on the structure and function of the microbiome in alkaline bauxite residue. Results showed that the contents of nutrient components were increased with Penicillium oxalicum (P. oxalicum) incorporation, as indicated by the increasing of carbon and nitrogen mineralization and enzyme metabolic efficiency. Specifically, the increasing enzyme metabolic efficiency was associated with nitrogen input, which shaped the microbial nutrient acquisition strategy. Subsequently, we evidenced that P. oxalicum played a significant role in shaping the assemblages of core bacterial taxa and influencing ecological functioning through intra- and cross-kingdom network analysis. Furthermore, a recruitment experiment indicated that nitrogen enhanced the enrichment of core microbiota (Nitrosomonas, Bacillus, Pseudomonas, and Saccharomyces) and may provide benefits to fungal community bio-diversity and microbial network stability. Collectively, these results demonstrated nitrogen-based coexistence patterns among P. oxalicum and microbiome and revealed P. oxalicum-mediated nutrient dynamics and ecophysiological adaptations in alkaline microhabitats. It will aid in promoting soil formation and ecological rehabilitation of bauxite residue. ENVIRONMENT IMPLICATION: Bauxite residue is a highly alkaline solid waste generated during the Bayer process for producing alumina. Attempting to transform bauxite residue into a stable soil-like substrate using low-cost microbial resources is a highly promising engineering. However, the dominant microorganisms and their specific roles in soil formation processes remain unknown. In this study, we evidenced the nitrogen-based coexistence patterns among Penicillium oxalicum and microbiome and revealed Penicillium oxalicum-mediated nutrient dynamics and ecophysiological adaptations in alkaline microhabitats. This study can improve the understanding of core microbes' assemblies that affect the microbiome physiological traits in soil formation processes.

5.
Insect Mol Biol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767730

RESUMO

Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3' untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (Apis mellifera L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.

6.
Sci Rep ; 14(1): 10642, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724565

RESUMO

Colorectal cancer (CRC) often necessitates cetuximab (an EGFR-targeting monoclonal antibody) for treatment. Despite its clinical utility, the specific operative mechanism of cetuximab remains elusive. This research investigated the influence of PLCB3, a potential CRC oncogene, on cetuximab treatment. We extracted differentially expressed genes from the GSE140973, the overlapping genes combined with 151 Wnt/ß-Catenin signaling pathway-related genes were identified. Then, we conducted bioinformatics analysis to pinpoint the hub gene. Subsequently, we investigated the clinical expression characteristics of this hub gene, through cell experimental, scrutinized the impact of cetuximab and PLCB3 on CRC cellular progression. The study identified 26 overlapping genes. High expression of PLCB3, correlated with poorer prognosis. PLCB3 emerged as a significant oncogene associated with patient prognosis. In vitro tests revealed that cetuximab exerted a cytotoxic effect on CRC cells, with PLCB3 knockdown inhibiting CRC cell progression. Furthermore, cetuximab treatment led to a reduction in both ß-catenin and PLCB3 expression, while simultaneously augmenting E-cadherin expression. These findings revealed PLCB3 promoted cetuximab inhibition on Wnt/ß-catenin signaling. Finally, simultaneous application of cetuximab with a Wnt activator (IM12) and PLCB3 demonstrated inhibited CRC proliferation, migration, and invasion. The study emphasized the pivotal role of PLCB3 in CRC and its potential to enhance the efficacy of cetuximab treatment. Furthermore, cetuximab suppressed Wnt/ß-catenin pathway to modulate PLCB3 expression, thus inhibiting colorectal cancer progression. This study offered fresh perspectives on cetuximab mechanism in CRC.


Assuntos
Proliferação de Células , Cetuximab , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Wnt , beta Catenina , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cetuximab/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , beta Catenina/metabolismo , beta Catenina/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Prognóstico , Antineoplásicos Imunológicos/farmacologia
7.
Chemosphere ; : 142383, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768785

RESUMO

Minerals and organic matter are essential components of soil, with minerals acting as the "bone" and organic matter as the "skin". The interfacial interactions between minerals and organic matter result in changes in their chemical composition, structure, functional groups, and physical properties, possessing a significant impact on soil properties, functions, and biogeochemical cycles. Understanding the interfacial interactions of minerals and organic matter is imperative to advance soil remediation technologies and carbon targets. Consequently, there is a growing interest in the physicochemical identification of the interfacial interactions between minerals and organic matter in the academic community. This review provides an overview of the mechanisms underlying these interactions, including adsorption, co-precipitation, occlusion, redox, catalysis and dissolution. Moreover, it surveys various methods and techniques employed to characterize the mineral-organic matter interactions. Specifically, the up-to-date spectroscopic techniques for chemical information and advanced microscopy techniques for physical information are highlighted. The advantages and limitations of each method are also discussed. Finally, we outline future research directions for interfacial interactions and suggests areas for improvement and development of characterization techniques to better understand the mechanisms of mineral-organic matter interactions.

8.
Heliyon ; 10(10): e30809, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38774326

RESUMO

Objective: To evaluate the efficacy of different combinations of immune checkpoint inhibitors (ICIs) and chemotherapy (CT) in the treatment of advanced non-small cell lung cancer (NSCLC). Methods: We obtained relevant randomized controlled trials (RCTs) from databases such as PubMed, Embase, Web of Science, and The Cochrane Library up to May 31, 2023. The analysis of clinical prognostic factors was performed using R 4.2.3 and STATA 15.0. The main outcomes measured were overall survival (OS) and progression-free survival (PFS), while secondary outcomes included the objective response rate (ORR), disease control rate (DCR), and treatment-related adverse events of grade 3-5 severity (Grade ≥3 TRAE). Results: A total of 17 randomized controlled trials (RCTs) were conducted between 2012 and 2023, involving 7792 patients. These trials evaluated 11 different treatment methods. The results of these trials showed that in terms of overall survival (OS) and progression-free survival (PFS), the combination of tislelizumab with chemotherapy and the combination of camrelizumab with chemotherapy were particularly effective. Moreover, when compared with other combination therapies, pembrolizumab combined with chemotherapy showed superiority in terms of disease control rate (DCR) and objective response rate (ORR). Subgroup analyses further demonstrated that the addition of immune checkpoint inhibitors (ICIs) to chemotherapy significantly improved PFS and OS in patients without liver metastasis and in those with brain metastasis. Additionally, carboplatin-based combination therapy was found to confer favorable survival benefits in terms of PFS, while cisplatin-based combination therapy showed the most favorable outcomes in terms of OS. The results of subgroup analyses for overall survival (OS) showed that the combination of immunotherapy and chemotherapy yielded positive outcomes in specific subgroups. These subgroups were characterized by PD-L1 Tumor Proportion Score (TPS) of 50 % or higher, usage of anti-PD-1 medications, age below 65, male gender, smoking history, and non-squamous cell carcinoma histology. Superior effectiveness was demonstrated only in extending the progression-free survival (PFS) of female patients and patients with squamous carcinoma. Meanwhile, other patient cohorts did not show the same level of improvement. Conclusions: Tislelizumab, camrelizumab or pembrolizumab combined with chemotherapy may be the optimal first-line treatment strategies for NSCLC.

9.
Physiol Meas ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697203

RESUMO

OBJECTIVE: Myocardial infarction (MI) is one of the most threatening cardiovascular diseases. This paper aims to explore a method for using an algorithm to autonomously classify myocardial infarction based on the electrocardiogram (ECG). APPROACH: A detection method of MI that fuses continuous T-wave area (C_TWA) feature and ECG deep features is proposed. This method consists of three main parts: (1) The onset of MI is often accompanied by changes in the shape of the T-wave in the ECG, thus the area of the T-wave displayed on different heartbeats will be quite different. The adaptive sliding window method is used to detect the start and end of the T-wave, and calculate the C_TWA on the same ECG record. Additionally, the coefficient of variation (CV) of C_TWA is defined as the C_TWA feature of the ECG. (2) The multi lead fusion convolutional neural network (Multi-lead-fusion CNN) was implemented to extract the deep features of the ECG. (3) The C_TWA feature and deep features of the ECG were fused by soft attention, and then inputted into the multi-layer perceptron to obtain the detection result. RESULTS: According to the interpatient paradigm, the proposed method reached a 97.67% accuracy, 96.59% precision, and 98.96% recall on the PTB dataset, whereas the proposed method reached 93.15% accuracy, 93.20% precision, and 95.14% recall on the clinical dataset. SIGNIFICANCE: The proposed method accurately extracts the feature of the C_TWA, and combines the deep features of the signal, thereby improving the detection accuracy and achieving ideal results on clinical datasets.

10.
Front Immunol ; 15: 1361277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711522

RESUMO

In the late stages of the COVID-19 pandemic, there's an increasing trend in opportunistic infections, including bacterial and fungal infections. This study discusses the treatment process of two cases of cryptococcal meningitis during the COVID-19 pandemic. It highlights the importance of laboratory testing for these co-infections and stresses the need for vigilance, early diagnosis, and proactive treatment to improve patient outcomes in the post-pandemic era.


Assuntos
Antifúngicos , COVID-19 , Meningite Criptocócica , SARS-CoV-2 , Humanos , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/diagnóstico , COVID-19/complicações , COVID-19/epidemiologia , Masculino , Antifúngicos/uso terapêutico , Pessoa de Meia-Idade , Feminino , Coinfecção , Adulto , Cryptococcus neoformans/isolamento & purificação , Resultado do Tratamento
11.
World J Gastrointest Surg ; 16(4): 1008-1016, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38690050

RESUMO

Helicobacter pylori (H. pylori) plays an important role in the development of gastric cancer, although its association to colorectal polyp (CP) or colorectal cancer (CRC) is unknown. In this issue of World Journal of Gastrointestinal Surgery, Zhang et al investigated the risk factors for H. pylori infection after colon polyp resection. Importantly, the researchers used R software to create a prediction model for H. pylori infection based on their findings. This editorial gives an overview of the association between H. pylori and CP/CRC, including the clinical significance of H. pylori as an independent risk factor for CP/CRC, the underlying processes of H. pylori-associated carcinogenesis, and the possible risk factors and identification of H. pylori.

12.
Small ; : e2401221, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593294

RESUMO

Nitrogen doping has been recognized as an important strategy to enhance the oxygen reduction reaction (ORR) activity of carbon-encapsulated transition metal catalysts (TM@C). However, previous reports on nitrogen doping have tended to result in a random distribution of nitrogen atoms, which leads to disordered electrostatic potential differences on the surface of carbon layers, limiting further control over the materials' electronic structure. Herein, a gradient nitrogen doping strategy to prepare nitrogen-deficient graphene and nitrogen-rich carbon nanotubes encapsulated cobalt nanoparticles catalysts (Co@CNTs@NG) is proposed. The unique gradient nitrogen doping leads to a gradual increase in the electrostatic potential of the carbon layer from the nitrogen-rich region to the nitrogen-deficient region, facilitating the directed electron transfer within these layers and ultimately optimizing the charge distribution of the material. Therefore, this strategy effectively regulates the density of state and work function of the material, further optimizing the adsorption of oxygen-containing intermediates and enhancing ORR activity. Theoretical and experimental results show that under controlled gradient nitrogen doping, Co@CNTs@NG exhibits significantly ORR performance (Eonset = 0.96 V, E1/2 = 0.86 V). At the same time, Co@CNTs@NG also displays excellent performance as a cathode material for Zn-air batteries, with peak power density of 132.65 mA cm-2 and open-circuit voltage (OCV) of 1.51 V. This work provides an effective gradient nitrogen doping strategy to optimize the ORR performance.

13.
Adv Mater ; : e2313752, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576272

RESUMO

Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.

14.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1102-1112, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621917

RESUMO

This study systematically combed the randomized controlled trial(RCT) of Chinese patent medicines in treatment of type 2 diabetes mellitus(T2DM) in recent five years by using the method of evidence map. It understood the distribution and quality of evidence in this field and found the existing Chinese patent medicines in treatment of T2DM and the problems in its research. The study collected the commonly used Chinese patent medicines for the treatment of T2DM from three drug catalogs, retrieved Chinese and English databases to obtain RCT literature related to Chinese patent medicines in recent five years, and extracted information such as sample size, study drug, combination medication, course of treatment, and outcome indicators from the literature. It also conducted quality evaluation based on the Cochrane collaborative network bias risk assessment tool and used charts to display the analysis results. A total of 19 kinds of Chinese patent medicines are collected, of which 13 kinds of Chinese patent medicines are mentioned in 131 articles related to RCT. The literature concerning Shenqi Jiangtang Capsules/Granules, Jinlida Granules, and Xiaoke Pills accounts for a large proportion. Outcome indicators include blood glucose, blood lipids, pancreatic islet cell function, and clinical symptoms. In terms of literature quality, 75 articles have correct random methods, and 1 article performs allocation hiding and blind methods. Therefore, the clinical orientation of Chinese patent medicines for the treatment of T2DM is broad, failing to reflect their own characteristics and lacking safety information. Insufficient attention has been paid to TCM syndrome scores, quality of life, and blood lipid outcome indicators that reflect the characteristics of traditional Chinese medicine(TCM). The number of studies on the treatment of T2DM by Chinese patent medicines varies greatly among varieties, and the quality of the studies is low. It is suggested that the holders of the marketing license of T2DM Chinese patent medicines should carry out a post-marketing re-evaluation of the varieties of traditional Chinese patent medicines for treating T2DM according to the relevant requirements of the State Food and Drug Administration, standardize the clinical positioning, and revise and improve the safety information in the instructions. It is recommended that researchers construct a core indicator dataset for Chinese patent medicine treatment of T2DM, improve the efficacy evaluation system, and develop an experimental plan based on CONSORT before conducting RCT.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Medicina Tradicional Chinesa , Medicamentos sem Prescrição/uso terapêutico , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
Medicine (Baltimore) ; 103(15): e37709, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608123

RESUMO

Breast cancer is a common malignancy with the highest mortality rate among women worldwide. Its incidence is on the rise year after year, accounting for more than one-tenth of new cancers worldwide. Increasing evidence suggests that forkhead box (FOX) transcription factors play an important role in the occurrence and development of breast cancer. However, little is known about the relationship between the expression, prognostic value, function, and immune infiltration of FOX transcription factors in tumor microenvironment. We used bioinformatics to investigate expression and function of FOX factor in breast cancer. Our results revealed the expression levels of FOXA1 and FOXM1 were significantly higher in breast cancer tissues than in normal tissues. The high expression of mRNA in FOXA1 (P < .05), FOXM1 (P < .01), and FOXP1 (P < .05) groups was related to tumor stage. Survival analysis results showed that increased FOXP1 mRNA levels were significantly associated with overall survival (OS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) in all patients with breast cancer (P < .05). Patients with the FOXA1 high-expression group had better RFS and DMFS than the low-expression group (P < .05), while patients with FOXM1 high-expression group had worse RFS, OS, and DMFS than the low-expression group (P < .05). Meanwhile, mutation analysis showed that genetic alterations in FOX transcription factors were significantly associated with shorter OS and progression-free survival (P < .05), but not with disease-free survival (P = .710) in patients with breast cancer. FOXP1, FOXA1, and FOXM1 may be used as potential biomarkers to predict the prognosis of patients with breast cancer. Functional enrichment indicated that FOX was mainly involved in cell division, cell senescence, cell cycle, and prolactin signaling pathway. In patients with breast cancer, FOXC2 expression was negatively correlated with the infiltration of B cells and positively correlated with the infiltration of neutrophils and dendritic cells. However, FOXM1 was negatively correlated with the infiltration of CD8 + T cells and macrophages and positively correlated with the infiltration of neutrophils and dendritic cells. These findings provided novel insights into the screening of prognostic biomarkers of the FOX family in breast cancer and laid a foundation for further research on the immune infiltration of the FOX transcription factor family members in tumors.


Assuntos
Neoplasias da Mama , Fatores de Transcrição Forkhead , Feminino , Humanos , Biomarcadores , Neoplasias da Mama/genética , Fatores de Transcrição Forkhead/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Proteínas Repressoras , RNA Mensageiro
17.
Adv Mater ; : e2400285, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613131

RESUMO

Bismuth-telluride-based alloy has long been considered as the most promising candidate for low-grade waste heat power generation. However, optimizing the thermoelectric performance of n-type Bi2Te3 is more challenging than that of p-type counterparts due to its greater sensitivity to texture, and thus limits the advancement of thermoelectric modules. Herein, the thermoelectric performance of n-type Bi2Te3 is enhanced by incorporating a small amount of CuGaTe2, resulting in a peak ZT of 1.25 and a distinguished average ZT of 1.02 (300-500 K). The decomposed Cu+ strengthens interlayer interaction, while Ga+ optimizes carrier concentration within an appropriate range. Simultaneously, the emerged numerous defects, such as small-angle grain boundaries, twin boundaries, and dislocations, significantly suppresses the lattice thermal conductivity. Based on the size optimization by finite element modelling, the constructed thermoelectric module yields a high conversion efficiency of 6.9% and output power density of 0.31 W cm-2 under a temperature gradient of 200 K. Even more crucially, the efficiency and output power little loss after subjecting the module to 40 thermal cycles lasting for 6 days. This study demonstrates the efficient and reliable Bi2Te3-based thermoelectric modules for broad applications in low-grade heat harvest.

18.
Chemistry ; : e202304234, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644695

RESUMO

With both TEMPO and O2 (in air) as the homogeneous redox mediators, BiBrO as the heterogeneous semiconductor photocatalyst, the first example of semi-heterogeneous photocatalytic decarboxylative phosphorylation of N-arylglycines with diarylphosphine oxides was established. A series of α-amino phosphinoxides were efficiently synthesized.

19.
J Hazard Mater ; 471: 134408, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678716

RESUMO

The occurrence and migration of colloids at smelting sites are crucial for the formation of multi-metal(loid)s pollution in groundwater. In this study, the behavior of natural colloids (1 nm-0.45 µm) at an abandoned smelting site was investigated by analyzing groundwater samples filtered through progressively decreasing pore sizes. Smelting activities in this site had negatively impacted the groundwater quality, leading to elevated concentrations of zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd). The results showed that heavy metal(loid)-bearing colloids were ubiquitous in the groundwater with the larger colloidal fractions (∼75 -450 nm) containing higher abundances of pollutants. It was also observed that the predominant colloids consisted of Zn-Al layered double hydroxide (LDH), sphalerite, kaolinite, and hematite. By employing multiple analytical techniques, including leaching experiments, soil colloid characterization, and Pb stable isotope measurements, the origin of groundwater colloids was successfully traced to the topsoil colloids. Most notably, our findings highlighted the increased risk of heavy metal(loid)s migration from polluted soils into adjacent sites through the groundwater because of colloid-mediated transport of contaminants. This field-scale investigation provides valuable insights into the geochemical processes governing heavy metal(loid) behavior as well as offering pollution remediation strategies specifically tailored for contaminated groundwater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA