Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 2): 129357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216011

RESUMO

Osteoporosis is a prevalent systemic skeletal disorder, particularly affecting postmenopausal women, primarily due to excessive production and activation of osteoclasts. However, the current anti-osteoporotic drugs utilized in clinical practice may lead to certain side effects. Therefore, it is necessary to further unravel the potential mechanisms regulating the osteoclast differentiation and to identify novel targets for osteoporosis treatment. This study revealed the most significant decline in VSIG4 expression among the VSIG family members. VSIG4 overexpression significantly inhibited RANKL-induced osteoclastogenesis and bone resorption function. Mechanistically, both western blot and immunofluorescence assay results demonstrated that VSIG4 overexpression attenuated the expression of osteoclast marker genes and dampened the activation of MAPK and NF-κB signaling pathways. Furthermore, VSIG4 overexpression could inhibit the generation of reactive oxygen species (ROS) and stimulate the expression of Nrf2 along with its downstream antioxidant enzymes via interaction with Keap1. Notably, a potent Nrf2 inhibitor, ML385, could reverse the inhibitory effect of VSIG4 on osteoclast differentiation. In line with these findings, VSIG4 overexpression also mitigated bone loss induced by OVX and attenuated the activation of osteoclasts in vivo. In conclusion, our results suggest that VSIG4 holds promise as a novel target for addressing postmenopausal osteoporosis. This is achieved by suppressing osteoclast formation via enhancing Nrf2-dependent antioxidant response against reactive oxygen species production.


Assuntos
Osteogênese , Osteoporose , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoclastos , NF-kappa B/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Diferenciação Celular , Receptores de Complemento/metabolismo , Receptores de Complemento/uso terapêutico
2.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37333088

RESUMO

Recent advances in single-cell epigenomic techniques have created a growing demand for scATAC-seq analysis. One key analysis task is to determine cell type identity based on the epigenetic data. We introduce scATAnno, a python package designed to automatically annotate scATAC-seq data using large-scale scATAC-seq reference atlases. This workflow generates the reference atlases from publicly available datasets enabling accurate cell type annotation by integrating query data with reference atlases, without the use of scRNA-seq data. To enhance annotation accuracy, we have incorporated KNN-based and weighted distance-based uncertainty scores to effectively detect cell populations within the query data that are distinct from all cell types in the reference data. We compare and benchmark scATAnno against 7 other published approaches for cell annotation and show superior performance in multiple data sets and metrics. We showcase the utility of scATAnno across multiple datasets, including peripheral blood mononuclear cell (PBMC), Triple Negative Breast Cancer (TNBC), and basal cell carcinoma (BCC), and demonstrate that scATAnno accurately annotates cell types across conditions. Overall, scATAnno is a useful tool for scATAC-seq reference building and cell type annotation in scATAC-seq data and can aid in the interpretation of new scATAC-seq datasets in complex biological systems.

3.
Biochem Pharmacol ; 217: 115817, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37757917

RESUMO

Osteoporosis, characterized by over-production and activation of osteoclasts, has become a major health problem especially in elderly women. In our study, we first tested the effect of Caudatin (Cau) in osteoclastogenesis, which is separated from Cynanchum auriculatum as a species of C-21 steroidal glyosides. The results indicated that Cau suppressed osteoclastogenesis in a time- and dose-dependent manner in vitro. Mechanistically, Cau was identified to inhibit NF-κB signaling pathway via modulation of KIF11-mediated mTORC1 activity. In vivo, by establishing an ovariectomized (OVX) mouse model to mimic osteoporosis, we confirmed that Cau treatment prevented OVX-induced bone loss in mice. In conclusion, we demonstrated that Cau inhibited NF-κB signaling pathway via modulation of KIF11-mediated mTORC1 activity to suppress osteoclast differentiation in vitro as well as OVX-induced bone loss in vivo. This provides the possibility of a novel prospective drug for osteoporosis remedies.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Camundongos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/metabolismo , Diferenciação Celular , Cinesinas/metabolismo , NF-kappa B/metabolismo , Osteoclastos , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Ovariectomia , Ligante RANK/farmacologia , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina
4.
Front Surg ; 9: 1029743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713656

RESUMO

Spinal surgeons have been drawn to the incidence of osteophytes following intervertebral disc degeneration in clinical practice. However, the production of osteophytes, particularly in the spinal canal, after anterior cervical discectomy and fusion (ACDF) is uncommon. We described a 42-year-old male patient who underwent C4-6 ACDF due to cervical stenosis two years prior in another public hospital in the province. His primary symptoms were significantly relieved, but he developed new pain and weakness in his right leg six months after surgery. The imaging results revealed a large posterior osteophyte at C5/6, compressing the spinal cord anteriorly. Accordingly, we performed cervical open-door laminoplasty to decompress the spinal cord. The patient's clinical symptoms had significantly improved at the one-year follow-up. This case seeks to inform surgeons that cautious, routine follow-ups are necessary for the event that a severe intracanal osteophyte develops at the operated level following ACDF. The comprehensive osteophyte removal and strong fixation at the operative level during ACDF warrant more consideration as these procedures may lower the incidence of new osteophytes. Additionally, surgical procedures may be required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA