Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 2): 130106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346628

RESUMO

An eco-friendly antimicrobial sulfur quantum dot scale inhibitor (CMC-SQDs) synthesized using carboxymethyl cellulose (CMC) showed strong inhibition of calcium sulfate (CaSO4) at a concentration just below 1 mg/L, with an inhibition efficiency exceeding 99 %. However, the precise interaction process between CMC-SQDs and CaSO4 remains unclear. This article investigates the effectiveness of SQDs in inhibiting the formation of CaSO4 and calcium carbonate (CaCO3) scales. Through static scale inhibition tests, molecular dynamics simulations, and quantum chemical calculations, the study aims to elucidate the different impacts of CMC-SQDs on CaSO4 and CaCO3 scale formation. The research focuses on understanding the relationship between the structural activity of CMC-SQDs and their scale-inhibiting performance and delving into the underlying mechanisms of scale inhibition. The findings describe the role of SQDs in a water-based solution, acting as persistent "nanodusts" that interact with calcium (Ca2+) ions and sulfate ions. CMC forms complexes with Ca2+ ions, and the presence of SQDs enhances the van der Waals force, indirectly increasing the resistance of associated ions and the binding energy on the surface of precipitated gypsum. Conversely, SQDs exhibit weak surface stability and have minimal binding energy when interacting with calcite, leading to limited occupation of available adsorption sites.


Assuntos
Carbonato de Cálcio , Pontos Quânticos , Carbonato de Cálcio/química , Sulfato de Cálcio/química , Carboximetilcelulose Sódica/química , Íons , Enxofre/química
2.
Langmuir ; 39(37): 13050-13057, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37672641

RESUMO

This work studies the friction and wear behaviors of chromium (hard material) and crystalline cellulose (soft material) under water lubrication considering the loading and sliding velocity on friction force, temperature of contact interfaces, and worn atoms from the atomic view. The change of friction force with sliding velocity is greater than that with loading, and it is easier to obtain a stable friction at high velocity. The average friction force in the stabilization gradually increases with loading and velocity, and the growth rate decreases with loading, while it increases with velocity. The temperature of contact interfaces at the beginning of sliding changes rapidly and gradually becomes stable. The temperature at the stabilization increases distinctly with velocity, while it does not change much with loading. Both the loading and sliding velocity have an important influence on the wear of soft material; it is noticed that the amount of worn atoms increases close to exponentially with velocity and linearly with loading. However, the wear of hard material changes less with increasing loading and sliding velocity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA