Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Soil ; 457(1): 25-41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268909

RESUMO

AIM: Magnesium (Mg) deficiency (known as grass tetany) is a serious metabolic disorder that affects grazing ruminants. We tested whether Mg-fertiliser can increase Mg concentration of Italian ryegrasses (Lolium multiflorum L.) including a cultivar (cv. Bb2067; 'Magnet'), bred to accumulate larger concentrations of Mg. METHODS: Under controlled environment (CE) conditions, three cultivars (cv. Bb2067, cv. Bb2068, cv. RvP) were grown in low-nutrient compost at six fertiliser rates (0-1500 µM MgCl2.6H2O). Under field conditions, the three cultivars in the CE condition and cv. Alamo were grown at two sites, and four rates of MgSO4 fertiliser application rates (0-200 kg ha-1 MgO). Multiple grass cuts were taken over two-years. RESULTS: Grass Mg concentration increased with increasing Mg-fertiliser application rates in all cultivars and conditions. Under field conditions, cv. Bb2067 had 11-73% greater grass Mg concentration and smaller forage tetany index (FTI) than other cultivars across the Mg-fertiliser application rates, sites and cuts. Grass dry matter (DM) yield of cv. Bb2067 was significantly (p < 0.05) smaller than cv. Alamo. The effect of Mg-fertiliser rate on DM yield was not significant (p ≥ 0.05). CONCLUSIONS: Biofortification of grass with Mg through breeding and agronomy can improve the forage Mg concentration for grazing ruminants, even in high-growth spring grass conditions when hypomagnesaemia is most prevalent. Response to agronomic biofortification varied with cultivar, Mg-fertiliser rate, site and weather. The cost:benefit of these approaches and farmer acceptability, and the impact on cattle and sheep grazing on grasses biofortified with Mg requires further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA