Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
BMC Genomics ; 25(1): 453, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720243

RESUMO

BACKGROUND: Insect Cytochrome P450 monooxygenase (CYPs or P450s) plays an important role in detoxifying insecticides, causing insect populations to develop resistance. However, the molecular functions of P450 gene family in Cyrtotrachelus buqueti genome are still lacking. RESULTS: In this study, 71 CbuP450 genes have been identified. The amino acids length of CbuP450 proteins was between 183 aa ~ 1041 aa. They are proteins with transmembrane domains. The main component of their secondary structure is α-helix and random coils. Phylogenetic analysis showed that C. buqueti and Rhynchophorus ferrugineus were the most closely related. This gene family has 29 high-frequency codons, which tend to use A/T bases and A/T ending codons. Gene expression analysis showed that CbuP450_23 in the female adult may play an important role on high temperature resistance, and CbuP450_17 in the larval may play an important role on low temperature tolerance. CbuP450_10, CbuP450_17, CbuP450_23, CbuP450_10, CbuP450_16, CbuP450_20, CbuP450_23 and CbuP450_ 29 may be related to the regulation of bamboo fiber degradation genes in C. buqueti. Protein interaction analysis indicates that most CbuP450 proteins are mainly divided into three aspects: encoding the biosynthesis of ecdysteroids, participating in the decomposition of synthetic insecticides, metabolizing insect hormones, and participating in the detoxification of compounds. CONCLUSIONS: We systematically analyzed the gene and protein characteristics, gene expression, and protein interactions of CbuP450 gene family, revealing the key genes involved in the stress response of CbuP450 gene family in the resistance of C. buqueti to high or low temperature stress, and identified the key CbuP450 proteins involved in important life activity metabolism. These results provided a reference for further research on the function of P450 gene family in C. buqueti.


Assuntos
Sistema Enzimático do Citocromo P-450 , Evolução Molecular , Filogenia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Família Multigênica , Genoma de Inseto , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Feminino , Perfilação da Expressão Gênica
2.
Nat Prod Bioprospect ; 14(1): 26, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691189

RESUMO

Seven undescribed compounds, including three flavones (1-3), one phenylpropanoid (19), three monoaromatic hydrocarbons (27-29), were isolated from the twigs of Mosla chinensis Maxim together with twenty-eight known compounds. The structures were characterized by HRESIMS, 1D and 2D NMR, and ECD spectroscopic techniques. Compound 20 displayed the most significant activity against A/WSN/33/2009 (H1N1) virus (IC50 = 20.47 µM) compared to the positive control oseltamivir (IC50 = 6.85 µM). Further research on the anti-influenza mechanism showed that compound 20 could bind to H1N1 virus surface antigen HA1 and inhibit the early attachment stage of the virus. Furthermore, compounds 9, 22, 23, and 25 displayed moderate inhibitory effects on the NO expression in LPS inducing Raw 264.7 cells with IC50 values of 22.78, 20.47, 27.66, and 30.14 µM, respectively.

3.
J Cell Mol Med ; 28(10): e18381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780509

RESUMO

Peritoneal fibrosis is a common pathological response to long-term peritoneal dialysis (PD) and a major cause for PD discontinuation. Understanding the cellular and molecular mechanisms underlying the induction and progression of peritoneal fibrosis is of great interest. In our study, in vitro study revealed that signal transducer and activator of transcription 3 (STAT3) is a key factor in fibroblast activation and extracellular matrix (ECM) synthesis. Furthermore, STAT3 induced by IL-6 trans-signalling pathway mediate the fibroblasts of the peritoneal stroma contributed to peritoneal fibrosis. Inhibition of STAT3 exerts an antifibrotic effect by attenuating fibroblast activation and ECM production with an in vitro co-culture model. Moreover, STAT3 plays an important role in the peritoneal fibrosis in an animal model of peritoneal fibrosis developed in mice. Blocking STAT3 can reduce the peritoneal morphological changes induced by chlorhexidine gluconate. In conclusion, our findings suggested STAT3 signalling played an important role in peritoneal fibrosis. Therefore, blocking STAT3 might become a potential treatment strategy in peritoneal fibrosis.


Assuntos
Ácidos Aminossalicílicos , Fibroblastos , Fibrose Peritoneal , Fenótipo , Fator de Transcrição STAT3 , Transdução de Sinais , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/genética , Fator de Transcrição STAT3/metabolismo , Animais , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Camundongos , Ácidos Aminossalicílicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Peritônio/patologia , Peritônio/metabolismo , Interleucina-6/metabolismo , Matriz Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Diálise Peritoneal/efeitos adversos , Benzenossulfonatos
4.
Antiviral Res ; : 105916, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777095

RESUMO

The severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel phlebovirus, recently being officially renamed as Dabie bandavirus, and a causative agent for an emerging infectious disease associated with high fatality. Effective therapeutics and vaccines are lacking and disease pathogenesis is yet to be fully elucidated. In our effort to identify new SFTSV inhibitory molecules, 6-Thioguanine (6-TG) was found to potently inhibit SFTSV infection. 6-TG has been widely used as therapeutic agent since the approval of the Food and Drug Administration in the 1960s. In the current study, we showed that 6-TG was a potent inhibitor of SFTSV infection with 50% effective concentrations (EC50) of 3.465 µM in VeroE6 cells, and 1.848 µM in HUVEC cells. The selectivity index (SI) was > 57 in VeroE6 cells and > 108 in HUVEC cells, respectively. The SFTSV RNA transcription, protein synthesis, and progeny virions were reduced in a dose dependent manner by the presence of 6-TG in the in vitro infection assay. Further study on the mechanism of the anti-SFTSV activity showed that 6-TG downregulated the production of early growth response gene-1 (EGR1). Using gene silencing and overexpression, we further confirmed that EGR1 was a host restriction factor against SFTSV. Meanwhile, treatment of infected experimental animals with 6-TG inhibited SFTSV infection and alleviated multi-organ dysfunction. In conclusion, we have identified 6-TG as an effective inhibitor of SFTSV replication via the inhibition of EGR1 expression. Further studies are needed to evaluate of 6-TG as a potential therapeutic for treating SFTS.

5.
Water Res ; 257: 121754, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38762929

RESUMO

Algal-bacterial granular sludge (ABGS) system is promising in wastewater treatment for its potential in energy-neutrality and carbon-neutrality. However, traditional cultivation of ABGS poses significant challenges attributable to its long start-up period and high energy consumption. Extracellular polymeric substances (EPS), which could be stimulated as a self-defense strategy in cells under toxic contaminants stress, has been considered to contribute to the ABGS granulation process. In this study, photogranulation of ABGS by EPS regulation in response to varying loading rates of N-Methylpyrrolidone (NMP) was investigated for the first time. The results indicated the formation of ABGS with a maximum average diameter of ∼3.3 mm and an exceptionally low SVI5 value of 67 ± 2 mL g-1 under an NMP loading rate of 125 mg L-1 d-1, thereby demonstrating outstanding settleability. Besides, almost complete removal of 300 mg L-1 NMP could be achieved at hydraulic retention time of 48 h, accompanied by chemical oxygen demand (COD) and total nitrogen (TN) removal efficiencies higher than 90 % and 70 %, respectively. Moreover, possible degradation pathway and metabolism mechanism in the ABGS system for enhanced removal of NMP and nitrogen were proposed. In this ABGS system, the mycelium with network structure constituted by filamentous microorganisms was a prerequisite for photogranulation, instead of necessarily leading to granulation. Stress of 100-150 mg L-1 d-1 NMP loading rate stimulated tightly-bound EPS (TB-EPS) variation, resulting in rapid photogranulation. The crucial role of TB-EPS was revealed with the involved mechanisms being clarified. This study provides a novel insight into ABGS development based on the TB-EPS regulation by NMP, which is significant for achieving the manipulation of photogranules.

6.
Proc Natl Acad Sci U S A ; 121(15): e2319525121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564637

RESUMO

The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.

7.
PLoS Negl Trop Dis ; 18(4): e0012108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683839

RESUMO

Ticks are a hematophagous parasite and a vector of pathogens for numerous human and animal diseases of significant importance. The expansion of tick distribution and the increased risk of tick-borne diseases due to global climate change necessitates further study of the spatial distribution trend of ticks and their potential influencing factors. This study constructed a dataset of tick species distribution in Xinjiang for 60 years based on literature database retrieval and historical data collection (January 1963-January 2023). The distribution data were extracted, corrected, and deduplicated. The dominant tick species were selected for analysis using the MaxEnt model to assess their potential distribution in different periods under the current and BCC-CSM2.MR mode scenarios. The results indicated that there are eight genera and 48 species of ticks in 108 cities and counties of Xinjiang, with Hyalomma asiaticum, Rhipicephalus turanicus, Dermacentor marginatus, and Haemaphysalis punctatus being the top four dominant species. The MaxEnt model analysis revealed that the suitability areas of the four dominant ticks were mainly distributed in the north of Xinjiang, in areas such as Altay and Tacheng Prefecture. Over the next four periods, the medium and high suitable areas within the potential distribution range of the four tick species will expand towards the northwest. Additionally, new suitability areas will emerge in Altay, Changji Hui Autonomous Prefecture, and other local areas. The 60-year tick dataset in this study provides a map of preliminary tick distribution in Xinjiang, with a diverse array of tick species and distribution patterns throughout the area. In addition, the MaxEnt model revealed the spatial change characteristics and future distribution trend of ticks in Xinjiang, which can provide an instrumental data reference for tick monitoring and tick-borne disease risk prediction not only in the region but also in other countries participating in the Belt and Road Initiative.


Assuntos
Biodiversidade , Mudança Climática , Carrapatos , Animais , China/epidemiologia , Carrapatos/classificação , Distribuição Animal , Clima , Doenças Transmitidas por Carrapatos/epidemiologia , Humanos
9.
J Ren Nutr ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615701

RESUMO

OBJECTIVE: Despite adequate dialysis, the prevalence of hyperkalemia in Chinese hemodialysis (HD) patients remains elevated. This study aims to evaluate the effectiveness of a dietary recommendation system driven by generative pretrained transformers (GPTs) in managing potassium levels in HD patients. METHODS: We implemented a bespoke dietary guidance tool utilizing GPT technology. Patients undergoing HD at our center were enrolled in the study from October 2023 to November 2023. The intervention comprised of two distinct phases. Initially, patients were provided with conventional dietary education focused on potassium management in HD. Subsequently, in the second phase, they were introduced to a novel GPT-based dietary guidance tool. This artificial intelligence (AI)-powered tool offered real-time insights into the potassium content of various foods and personalized dietary suggestions. The effectiveness of the AI tool was evaluated by assessing the precision of its dietary recommendations. Additionally, we compared predialysis serum potassium levels and the proportion of patients with hyperkalemia among patients before and after the implementation of the GPT-based dietary guidance system. RESULTS: In our analysis of 324 food photographs uploaded by 88 HD patients, the GPTs system evaluated potassium content with an overall accuracy of 65%. Notably, the accuracy was higher for high-potassium foods at 85%, while it stood at 48% for low-potassium foods. Furthermore, the study examined the effect of GPT-based dietary advice on patients' serum potassium levels, revealing a significant reduction in those adhering to GPTs recommendations compared to recipients of traditional dietary guidance (4.57 ± 0.76 mmol/L vs. 4.84 ± 0.94 mmol/L, P = .004). Importantly, compared to traditional dietary education, dietary education based on the GPTs tool reduced the proportion of hyperkalemia in HD patients from 39.8% to 25% (P = .036). CONCLUSION: These results underscore the promising role of AI in improving dietary management for HD patients. Nonetheless, the study also points out the need for enhanced accuracy in identifying low potassium foods. It paves the way for future research, suggesting the incorporation of extensive nutritional databases and the assessment of long-term outcomes. This could potentially lead to more refined and effective dietary management strategies in HD care.

10.
Free Radic Biol Med ; 218: 120-131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583680

RESUMO

Sepsis-induced acute kidney injury (S-AKI) is the most common type of acute kidney injury (AKI), accompanied by elevated morbidity and mortality rates. This study investigated the mechanism by which lipid droplets (LDs) degraded via autophagy (lipophagy)required for RAB7 regulated ferroptosis in the pathogenesis of S-AKI. Here, we constructed the S-AKI model in vitro and in vivo to elucidate the potential relationship of lipophagy and ferroptosis, and we first confirmed that the activation of lipophagy promoted renal tubular epithelial cell ferroptosis and renal damage in S-AKI. The results showed that lipopolysaccharide (LPS) induced a marked increase in lipid peroxidation and ferroptosis, which were rescued by ferrstain-1 (Fer-1), an inhibitor of ferroptosis. In addition, LPS induced the remarkable activation of RAB7-mediated lipophagy. Importantly, silencing RAB7 alleviated LPS-induced lipid peroxidation and ferroptosis. Thus, the present study demonstrated the potential significant role of ferroptosis and lipophagy in sepsis-induced AKI, and contributed to better understanding of the pathogenesis and treatment targets of AKI.


Assuntos
Injúria Renal Aguda , Autofagia , Ferroptose , Peroxidação de Lipídeos , Lipopolissacarídeos , Sepse , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/etiologia , Sepse/complicações , Sepse/metabolismo , Sepse/patologia , Sepse/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Ferroptose/genética , Animais , Camundongos , Humanos , Masculino , Gotículas Lipídicas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
11.
BMC Nephrol ; 25(1): 79, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443846

RESUMO

BACKGROUND: Sepsis is a life-threatening, systemic inflammatory disease that can lead to a variety of conditions, including septic acute kidney injury (AKI). Recently, multiple circular Rnas (circRNAs) have been implicated in the development of this disease. METHODS: In this study, we aimed to elucidate the role of circ-Gatad1 in sepsis induced AKI and its potential mechanism of action. High-throughput sequencing was used to investigate abnormal expression of circRNA in AKI and healthy volunteer. Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. HK2 cells were employ to analysis the ROS, inflammatory cytokines expression, proliferation and apoptosis under LPS condition. RESULTS: The result show that the expression of circ-Gatad1 was increased in septic acute kidney patients. Downregulation circ-Gatad1 suppressed LPS-treated induced HK2 cells injury including apoptosis, proliferation ability, ROS and inflammatory cytokines level. Bioinformatics and luciferase report analysis confirmed that both miR-22-3p and TRPM7 were downstream targets of circ-Gatad1. Overexpression of TRPM7 or downregulation of miR-22-3p reversed the protective effect of si-circ-Gatad1 to HK2 after exposure to LPS (5 µg/ml) microenvironment. CONCLUSION: In conclusion, knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney.


Assuntos
Injúria Renal Aguda , MicroRNAs , Nefrite , Sepse , Canais de Cátion TRPM , Humanos , Injúria Renal Aguda/genética , Citocinas , Rim , Lipopolissacarídeos/toxicidade , Luciferases , MicroRNAs/genética , Proteínas Serina-Treonina Quinases , Espécies Reativas de Oxigênio , RNA Circular/genética , Sepse/genética
12.
Heliyon ; 10(4): e26014, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434050

RESUMO

Neuroblastoma, predominantly afflicting young individuals, is characterized as an embryonal tumor, with poor prognosis primarily attributed to chemoresistance. This study delved into the impact of tripartite motif (TRIM) 59, an E3 ligase, on neuroblastoma development and chemosensitivity through mediating ferroptosis and the involvement of the tumor suppressor p53. Clinical samples were assessed for TRIM59 and p53 levels to explore their correlation with neuroblastoma differentiation. In neuroblastoma cells, modulation of TRIM59 expression, either through overexpression or knockdown, was coupled with doxorubicin hydrochloride (DOX) or ferrostatin-1 (Fer-1) therapy. In vivo assessments examined the influence of TRIM59 knockdown on neuroblastoma chemosensitivity to DOX. Co-immunoprecipitation and ubiquitination assays investigated the association between TRIM59 and p53. Proliferation was gauged with Cell Counting Kit-8, lipid reactive oxygen species (ROS) were assessed via flow cytometry, and protein levels were determined by Western blotting. TRIM59 expression was inversely correlated with neuroblastoma differentiation and positively linked to cell proliferation in response to DOX. Moreover, TRIM59 impeded lipid ROS generation and ferroptosis by directly interacting with p53, promoting its ubiquitination and degradation in DOX-exposed neuroblastoma cells. Fer-1 countered the impact of TRIM59 knockdown on neuroblastoma, while TRIM59 knockdown enhanced the therapeutic efficacy of DOX in xenograph mice. This study underscores TRIM59 as an oncogene in neuroblastoma, fostering growth and chemoresistance by suppressing ferroptosis through p53 ubiquitination and degradation. TRIM59 emerges as a potential strategy for neuroblastoma therapy.

13.
Biomed Pharmacother ; 172: 116301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377737

RESUMO

Soluble epoxide hydrolase (sEH) inhibition has been shown multiple beneficial effects against brain injuries of Intracerebral hemorrhage (ICH). However, the underlying mechanism of its neuroprotective effects after ICH has not been explained fully. Ferroptosis, a new form of iron-dependent programmed cell death, has been shown to be implicated in the secondary injuries after ICH. In this study, We examined whether sEH inhibition can alleviate brain injuries of ICH through inhibiting ferroptosis. Expression of several markers for ferroptosis was observed in the peri-hematomal brain tissues in mice after ICH. lip-1, a ferroptosis inhibitor, alleviated iron accumulation, lipid peroxidation and the secondary damages post-ICH in mice model. Intraperitoneal injection of 1-Trifluoromethoxyphenyl-3- (1-propionylpiperidin-4-yl)urea (TPPU), a highly selective sEH inhibitor, could inhibit ferroptosis and alleviate brain damages in ICH mice. Furthermore, RNA-sequencing was applied to explore the potential regulatory mechanism underlying the effects of TPPU in ferroptosis after ICH. C-C chemokine ligand 5 (CCL5) may be the key factor by which TPPU regulated ferroptosis after ICH since CCL5 antagonist could mimic the effects of TPPU and CCL5 reversed the inhibitive effect of TPPU on ferroptosis and the neuroprotective effects of TPPU on secondary damage after ICH. Taken together, these data indicate that ferroptosis is a key pathological feature of ICH and Soluble epoxide hydrolase inhibitor can exert neuroprotective effect by preventing ferroptosis after ICH.


Assuntos
Hemorragia Cerebral , Epóxido Hidrolases , Ferroptose , Compostos de Fenilureia , Piperidinas , Animais , Camundongos , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Epóxido Hidrolases/antagonistas & inibidores , Ferro , Ligantes , Fármacos Neuroprotetores/farmacologia , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia
14.
J Am Chem Soc ; 146(8): 5056-5062, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38345300

RESUMO

Cyclic ketene acetals (CKAs) are among the most well-studied monomers for radical ring-opening polymerization (rROP). However, ring-retaining side reactions and low reactivities in homopolymerization and copolymerization remain significant challenges for the existing CKAs. Here, we report that a class of monosaccharide CKAs can be facilely prepared from a short and scalable synthetic route and can undergo quantitative, regiospecific, and stereoselective rROP. NMR analyses and degradation experiments revealed a reaction mechanism involving a propagating radical at the C2 position of pyranose with different monosaccharides exhibiting distinct stereoselectivity in the radical addition of the monomer. Furthermore, the addition of maleimide was found to improve the incorporation efficiency of monosaccharide CKA in the copolymerization with vinyl monomers and produced unique degradable terpolymers with carbohydrate motifs in the polymer backbone.

15.
Angew Chem Int Ed Engl ; 63(17): e202401602, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345598

RESUMO

Electrochemical biomass conversion holds promise to upcycle carbon sources and produce valuable products while reducing greenhouse gas emissions. To this end, deep insight into the interfacial mechanism is essential for the rational design of an efficient electrocatalytic route, which is still an area of active research and development. Herein, we report the reduction of dihydroxyacetone (DHA)-the simplest monosaccharide derived from glycerol feedstock-to acetol, the vital chemical intermediate in industries, with faradaic efficiency of 85±5 % on a polycrystalline Cu electrode. DHA reduction follows preceding dehydration by coordination with the carbonyl and hydroxyl groups and the subsequent hydrogenation. The electrokinetic profile indicates that the rate-determining step (RDS) includes a proton-coupled electron transfer (PCET) to the dehydrated intermediate, revealed by coverage-dependent Tafel slope and isotopic labeling experiments. An approximate zero-order dependence of H+ suggests that water acts as the proton donor for the interfacial PCET process. Leveraging these insights, we formulate microkinetic models to illustrate its origin that Eley-Rideal (E-R) dominates over Langmuir-Hinshelwood (L-H) in governing Cu-mediated DHA reduction, offering rational guidance that increasing the concentration of the adsorbed reactant alone would be sufficient to promote the activity in designing practical catalysts.

16.
Nanoscale ; 16(8): 3838-3880, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38329288

RESUMO

Lead halide perovskites (LHPs) are emerging semiconductor materials for light-emitting diodes (LEDs) owing to their unique structure and superior optoelectronic properties. However, defects that initiate degradation of LHPs through external stimuli and prompt internal ion migration at the interfaces remain a significant challenge. The electric field (EF), which is a fundamental driving force in LED operation, complicates the role of these defects in the physical and chemical properties of LHPs. A deeper understanding of EF-induced defect behavior is crucial for optimizing the LED performance. In this review, the origins and characterization of defects are explored, indicating the influence of EF-induced defect dynamics on LED performance and stability. A comprehensive overview of recent defect passivation approaches for LHP bulk films and nanocrystals (NCs) is also provided. Given the ubiquity of EF, a summary of the EF-induced defect behavior can enhance the performance of perovskite LEDs and related optoelectronic devices.

17.
Nat Aging ; 4(3): 414-433, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321225

RESUMO

The incidence of intestinal diseases increases with age, yet the mechanisms governing gut aging and its link to diseases, such as colorectal cancer (CRC), remain elusive. In this study, while considering age, sex and proximal-distal variations, we used a multi-omics approach in non-human primates (Macaca fascicularis) to shed light on the heterogeneity of intestinal aging and identify potential regulators of gut aging. We explored the roles of several regulators, including those from tryptophan metabolism, in intestinal function and lifespan in Caenorhabditis elegans. Suggesting conservation of region specificity, tryptophan metabolism via the kynurenine and serotonin (5-HT) pathways varied between the proximal and distal colon, and, using a mouse colitis model, we observed that distal colitis was more sensitive to 5-HT treatment. Additionally, using proteomics analysis of human CRC samples, we identified links between gut aging and CRC, with high HPX levels predicting poor prognosis in older patients with CRC. Together, this work provides potential targets for preventing gut aging and associated diseases.


Assuntos
Colite , Serotonina , Animais , Humanos , Idoso , Serotonina/metabolismo , Triptofano/metabolismo , Multiômica , Colite/metabolismo , Envelhecimento/genética , Caenorhabditis elegans/metabolismo , Primatas/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-38401077

RESUMO

Background: Amidst the complexities of sepsis-induced inflammatory responses and myocardial injury, this study investigates the therapeutic potential of vitamin C in mitigating sepsis complications. The findings offer crucial insights into the prospective use of vitamin C, shaping future strategies for enhanced patient care. Objective: To investigate the impact of vitamin C on the inflammatory response and myocardial damage in individuals with sepsis. Methods: A total of 83 sepsis patients treated in our hospital from January 2021 to January 2023 were randomly divided into a control group (n=41, receiving basic treatment) and a study group (n=42, receiving vitamin C in addition to basic treatment). To evaluate the impact of treatment, we compared organ dysfunction, inflammatory response index, myocardial injury index, and morbidity/mortality rates before and after the intervention in both groups. It allowed for a comprehensive analysis of the treatment's effects on these key parameters. Results: After therapy, the study group exhibited lower SOFA ratings compared to the control group (P < .05). Levels of Hypersensitive C-reactive Protein (hs-CRP), Tumor Necrosis Factor (TNF), High Mobility Group Protein B1 (HMGB1), Creatine Kinase Isoenzyme (CK-MB), Troponin I (cTnI), and B-type brain natriuretic peptide (BNP) were significantly lower in the study group than in the control group after treatment (P < .05). The study group also demonstrated a lower morbidity and mortality rate (9.52%) compared to the control group (29.27%) (P < .05). Conclusions: Vitamin C supplementation holds significant therapeutic value, contributing to reduced inflammatory response, myocardial injury, morbidity, and mortality rates in sepsis patients. This intervention enhances clinical efficacy, fostering disease regression.

19.
EMBO Mol Med ; 16(3): 575-595, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366162

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening disease caused by a novel bunyavirus (SFTSV), mainly transmitted by ticks. With no effective therapies or vaccines available, understanding the disease's mechanisms is crucial. Recent studies found increased expression of programmed cell death-1 (PD-1) on dysfunctional T cells in SFTS patients. However, the role of the PD-1/programmed cell death-ligand 1 (PD-L1) pathway in SFTS progression remains unclear. We investigated PD-1 blockade as a potential therapeutic strategy against SFTSV replication. Our study analyzed clinical samples and performed in vitro experiments, revealing elevated PD-1/PD-L1 expression in various immune cells following SFTSV infection. An anti-PD-1 nanobody, NbP45, effectively inhibited SFTSV infection in peripheral blood mononuclear cells (PBMCs), potentially achieved through the mitigation of apoptosis and the augmentation of T lymphocyte proliferation. Intriguingly, subcutaneous administration of NbP45 showed superior efficacy compared to a licensed anti-PD-1 antibody in an SFTSV-infected humanized mouse model. These findings highlight the involvement of the PD-1/PD-L1 pathway during acute SFTSV infection and suggest its potential as a host target for immunotherapy interventions against SFTSV infection.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Humanos , Camundongos , Infecções por Bunyaviridae/tratamento farmacológico , Phlebovirus/fisiologia , Antígeno B7-H1 , Leucócitos Mononucleares , Receptor de Morte Celular Programada 1
20.
Infect Dis Poverty ; 13(1): 3, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191468

RESUMO

BACKGROUND: Brucellosis is a zoonotic affliction instigated by bacteria belonging to the genus Brucella and is characterized by a diverse range of pervasiveness, multiple transmission routes, and serious hazards. It is imperative to amalgamate the current knowledge and identify gaps pertaining to the role of ticks in brucellosis transmission. METHODS: We systematically searched China National Knowledge Infrastructure (CNKI), WanFang, Google Scholar, and PubMed on the topic published until April 23, 2022. The procedure was performed in accordance with the Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The selected articles were categorized across three major topic areas, and the potential data was extracted to describe evidence-practice gaps by two reviewers. RESULTS: The search identified 83 eligible studies for the final analyses. The results highlighted the potential capacity of ticks in brucellosis transmission as evidenced by the detection of Brucella in 16 different tick species. The pooled overall prevalence of Brucella in ticks was 33.87% (range: 0.00-87.80%). The review also revealed the capability of Brucella to circulate in parasitic ticks' different developmental stages, thus posing a potential threat to animal and human health. Empirical evidence from in vitro rodent infection experiments has revealed that ticks possess the capability to transmit Brucella to uninfected animals (range: 45.00-80.00%). Moreover, significant epidemiological associations have been found between the occurrence of brucellosis in animals and tick control in rangelands, which further suggests that ticks may serve as potential vectors for brucellosis transmission in ruminants. Notably, a mere three cases of human brucellosis resulting from potential tick bites were identified in search of global clinical case reports from 1963 to 2019. CONCLUSIONS: It is imperative to improve the techniques used to identify Brucella in ticks, particularly by developing a novel, efficient, precise approach that can be applied in a field setting. Furthermore, due to the lack of adequate evidence of tick-borne brucellosis, it is essential to integrate various disciplines, including experimental animal science, epidemiology, molecular genetics, and others, to better understand the efficacy of tick-borne brucellosis. By amalgamating multiple disciplines, we can enhance our comprehension and proficiency in tackling tick-borne brucellosis.


Assuntos
Brucella , Brucelose , Carrapatos , Animais , Humanos , Lacunas da Prática Profissional , Brucelose/epidemiologia , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA