Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(16): 25350-25358, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710424

RESUMO

Fiber optic technology connects the world through the Internet, enables remote sensing, and connects disparate functional optical devices. Highly confined silicon photonics promises extreme scale and functional integration. However, the optical modes of silicon nanowire waveguides and optical fibers are very different, making efficient fiber-chip coupling a challenge. Vertical grating couplers, the dominant coupling method today, have limited optical bandwidth and are naturally out-of-plane. Here we demonstrate a new method that is low-loss, broadband, manufacturable, and naturally planar. We adiabatically couple a tapering silicon nanowire waveguide to a conic nanotapered optical fiber, measuring transmission between 2.0 µm and 2.2 µm wavelength. The silicon chip is fabricated at a commercial foundry and then post-processed to release the tapering nanowires. We estimate an optimal per-coupler transmission of -0.48 dB (maximum; 95% confidence interval [+0.46, -1.68] dB) and a 1-dB bandwidth of at least 295 nm. With automated measurements, we quantify the device tolerance to lateral misalignment, measuring a flat response within ±0.968 µm. This new design can enable low-loss modular systems of integrated photonics irrespective of material and waveband.

2.
Opt Lett ; 47(15): 3868-3871, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913335

RESUMO

Although grating couplers have become the de-facto standard for optical access to integrated silicon photonics platforms, their performance at visible wavelengths, in moderate index contrast platforms such as silicon nitride, leaves significant room for improvement. In particular, the index contrast governs the diffraction efficiency per grating tooth and the resulting overall coupler length. In this work, we develop two approaches to address this problem: a dielectric grating that sums multiple optical modes to increase the overall output intensity; and an embedded metal grating that enhances the attainable refractive index contrast, and therefore reduces the on-chip footprint. We present experimental results that can be developed to realize compact efficient visible wavelength photonic interconnects, with a view toward cryogenic deployment for quantum photonics, where space is constrained and efficiency is critical.

3.
J Phys Chem Lett ; 13(17): 3831-3839, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35467342

RESUMO

The deformation and fracture mechanism of two-dimensional (2D) materials are still unclear and not thoroughly investigated. Given this, mechanical properties and mechanisms are explored on example of gallium telluride (GaTe), a promising 2D semiconductor with an ultrahigh photoresponsivity and a high flexibility. Hereby, the mechanical properties of both substrate-supported and suspended GaTe multilayers were investigated through Berkovich-tip nanoindentation instead of the commonly used AFM-based nanoindentation method. An unusual concurrence of multiple pop-in and load-drop events in loading curve was observed. Theoretical calculations unveiled this concurrence originating from the interlayer-sliding mediated layers-by-layers fracture mechanism in GaTe multilayers. The van der Waals force dominated interlayer interactions between GaTe and substrates was revealed much stronger than that between GaTe interlayers, resulting in the easy sliding and fracture of multilayers within GaTe. This work introduces new insights into the deformation and fracture of GaTe and other 2D materials in flexible electronics applications.

4.
Opt Express ; 28(8): 12262-12271, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403724

RESUMO

The spectacular success of silicon-based photonic integrated circuits (PICs) in the past decade naturally begs the question of whether similar fabrication procedures can be applied to other material platforms with more desirable optical properties. In this work, we demonstrate the individual passive components (grating couplers, waveguides, multi-mode interferometers and ring resonators) necessary for building large scale integrated circuits in suspended gallium arsenide (GaAs). Implementing PICs in suspended GaAs is a viable route towards achieving optimal system performance in areas with stringent device constraints like energy efficient transceivers for exascale systems, integrated electro-optic comb lasers, integrated quantum photonics, cryogenic photonics and electromechanical guided wave acousto-optics.

5.
Phys Rev Lett ; 108(5): 053601, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22400933

RESUMO

We demonstrate fast polarization and path control of photons at 1550 nm in lithium niobate waveguide devices using the electro-optic effect. We show heralded single photon state engineering, quantum interference, fast state preparation of two entangled photons, and feedback control of quantum interference. These results point the way to a single platform that will enable the integration of nonlinear single photon sources and fast reconfigurable circuits for future photonic quantum information science and technology.

6.
Talanta ; 81(1-2): 68-75, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20188889

RESUMO

Fluorescent antibody protein (IgG) was attached to the surface of an integrated optical glass waveguide chip via specific binding to a covalently attached hapten and used as a substrate for the measurement of protease activities. Exposure of the optical chip to proteases resulted in digestion of the bound fluorescent antibody molecules and proportional decrease in the detectable fluorescence resulting from loss of fluorescence from the evanescent field. The bound fluorescent antibody protein was used as a unique universal protease substrate in which the combined biological activity and fluorescence signal were the basis of measurement. The action of proteases was monitored in real-time mode where the gradual decrease in evanescent fluorescence was recorded. The chip was regenerated by complete digestion of the antibody substrate by excess pepsin and recharged by incubation with a fresh sample of the labelled antibody. The biosensor was used to detect activity of several proteases including a bacterial protease preparation, Pronase E. The linear range of measurable Pronase E activity was from 0.03 to 2 units/mL. A measurement cycle took 40 min for samples with high protease concentration (>or=0.5 units/mL), when the concentration of the protease was less measurement times up to 100 min were required. The method demonstrates the principle of a new mode of real-time biosensing of proteases. The modular integrated optical glass waveguide biosensor system used in this study is compact and controlled by a laptop computer and could easily be miniaturised and utilized as a true probe device for detecting proteases with potential applications in a wide range of areas including research, clinical diagnostics, biotechnology processing and food and detergent manufacturing industries.


Assuntos
Anticorpos/imunologia , Técnicas Biossensoriais/métodos , Ensaios Enzimáticos/métodos , Haptenos/imunologia , Fenômenos Ópticos , Peptídeo Hidrolases/metabolismo , Técnicas Biossensoriais/instrumentação , Ensaios Enzimáticos/instrumentação , Fluoresceínas/metabolismo , Espectrometria de Fluorescência , Streptomyces griseus/enzimologia , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA