Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Sex Med ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972660

RESUMO

BACKGROUND: Diabetes mellitus commonly causes endothelial cell and smooth muscle cell death in penile cavernous tissue. AIM: The study sought to study the mode of cell death in the penile cavernous tissue in type 1 diabetic rats. METHODS: A total of 36 Sprague Dawley rats 10 weeks of age were randomly divided into 2 groups: a normoglycemic group and type 1 diabetic group (intraperitoneal injection of Streptozotocin (STZ), 60 mg/kg). We randomly selected 6 rats from each group for tests at the end of 11, 14, and 18 weeks of age, respectively. All rats were able to eat and drink freely. The ratio of maximum intracavernous pressure to mean arterial pressure, concentration of serum testosterone, level of nitric oxide in the penile cavernosum, and expression of active caspase-1 (pyroptosis) and active caspase-3 (apoptosis) were determined. OUTCOMES: At the end of weeks 4 and 8 of type 1 diabetes, the proportions of endothelial cells and smooth muscle cells undergoing apoptosis and pyroptosis in penile cavernous tissue are different. RESULTS: The ratio of maximum intracavernous pressure to mean arterial pressure and nitric oxide levels were significantly lower in the 4- and 8-week diabetic groups than in the normoglycemic group (P < .01). Penile endothelial cell pyroptosis (5.67 ± 0.81%), smooth muscle cell apoptosis (23.72 ± 0.48%), total cell pyroptosis (9.67 ± 0.73%), and total apoptosis (10.52 ± 1.45%) were significantly greater in the 4-week diabetic group than in the normoglycemic group (P < .01). The proportion of endothelial cell pyroptosis (24.4 ± 3.69%), endothelial cell apoptosis (22.13 ± 2.43%), total cell pyroptosis (14.75 ± 0.93%), and total apoptosis (14.82 ± 1.08%) in the penile tissues of the 8-week diabetic group were significantly greater than those in the normoglycemic group (P < .01).The 8-week survival proportions of diabetic endothelial cells (38.86 ± 8.85%) and smooth muscle cells (44.46 ± 2.94%) was significantly lower than the 4-week survival proportions of endothelial cells (93.17 ± 8.07%) and smooth muscle cells (75.12 ± 4.76%) (P < .05). CLINICAL TRANSLATION: Inhibition of cell death by different methods at different stages may be the key to the treatment of type 1 diabetes-induced erectile dysfunction. STRENGTHS AND LIMITATIONS: The effect of type 1 diabetes on other types of cell death in penile cavernous tissue needs further study. CONCLUSION: The mode of death of endothelial cells in the cavernous tissue of the penis in the early stage in diabetic rats is dominated by pyroptosis, and the death of smooth muscle cells is dominated by apoptosis. Endothelial cell and smooth muscle cell death are not consistent at different stages of diabetes progression.

2.
Sci Rep ; 14(1): 4550, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402305

RESUMO

Parabens (PBs) are a class of preservatives commonly used in cosmetics and pharmaceuticals. Studies have shown that these compounds may act as endocrine disruptors, affecting thyroxine levels in humans. PBs with longer chain substituents, such as butylparaben (BuP), are less prone to complete biotransformation and are therefore more likely to accumulate in the body. In this study, the effect of high-dose exposure to BuP on thyroid microstructure, ultrastructure, and function was investigated in rats. 50 mg/kg bw per day of BuP was injected subcutaneously into the neck of rats for 4 weeks. Rat thyroid weight, microstructure, and ultrastructure were determined, and the levels of thyroid sodium/iodide symporter (NIS), serum thyroid hormones, and thyroid autoantibodies were measured. The human thyroid cell line was used to study the mechanism of BuP on thyroid epithelial cells. The weight of the thyroid gland of BuP-exposed rats was increased, the structure of the thyroid follicles was irregular and damaged, the mitochondria and rough endoplasmic reticulum were swollen and damaged, and the microvilli at the tip of the epithelium were reduced and disappeared. Serum total T3, total T4, free T3, and free T4 were decreased in BuP-exposed rats, and TSH, peroxidase antibody, and thyroglobulin antibody were increased. In vitro, BuP decreased the level of NIS in thyroid epithelial cells, inhibited proliferation and viability, and induced apoptosis in a dose-dependent manner. This study demonstrated that high-dose exposure to BuP induced structural, ultrastructural, and functional impairment to the thyroid gland of rats, which may be one of the factors leading to hypothyroidism.


Assuntos
Hipotireoidismo , Parabenos , Ratos , Animais , Humanos , Parabenos/toxicidade , Parabenos/química , Hormônios Tireóideos , Hipotireoidismo/induzido quimicamente , Tiroxina , Tireotropina
3.
Cell Mol Biol Lett ; 29(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172726

RESUMO

Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-ß1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.


Assuntos
Lesões das Artérias Carótidas , Lesões do Sistema Vascular , Animais , Ratos , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Fibromodulina/metabolismo , Hiperplasia/complicações , Hiperplasia/metabolismo , Hiperplasia/patologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Neointima/prevenção & controle , Ratos Sprague-Dawley , RNA/metabolismo , RNA de Transferência/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/metabolismo
4.
Andrology ; 12(1): 222-230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37222247

RESUMO

BACKGROUND: It has been shown that methylation in the promoter region of eNOS can downregulate eNOS expression resulting in the endothelial dysfunction. However, it is unclear whether low androgen levels and type 1 diabetes cause ED by methylating the promoter region of eNOS in the penile corpus cavernosum. OBJECTIVE: To clarify the effects of type 1 diabetes and hypo-androgen status on the methylation level of the promoter region of the eNOS gene in penile cavernous tissue and their relationship with the erectile function. METHODS: Fifty-eight eight-week-old male Sprague-Dawley rats were randomly divided into six groups (n = 6): sham operation group, castration group, castration+testosterone (cast+T) group, normoglycemia group, diabetic group, and diabetic+methyltransferase inhibitor (5-aza-dc, 1.5 mg/kg) group. The ICPmax/MAP, serum T, the concentration of nitric oxide (NO), the expression of DNMT1, DNMT3a, DNMT3b, and eNOS, and the methylation level of the eNOS promoter region in penile corpus cavernosum of rat were examined 4 weeks after surgery in the sham-operated group, the castration group, and the castration + testosterone replacement group. Those tests were examined after 6 weeks using of methylation inhibitors in the normoglycemic group, the diabetic group, and the diabetic + methylation inhibitor group. RESULTS: ICPmax/MAP, DNMT1, DNMT3a, DNMT3b, eNOS, and NO levels were significantly lower in castrated rats than in sham and cast+T rats (P < 0.05). ICPmax/MAP, eNOS, and NO levels were lower, and DNMT1, DNMT3a, and DNMT3b expression levels were significantly increased in the diabetic group compared with the normoglycemic and diabetic+methyltransferase inhibitor groups (P < 0.05). There was no significant difference in the methylation level of the promoter region of eNOS in penile cavernous tissue of castrated rats compared with the sham group or the testosterone replacement group. The methylation level of the promoter region of eNOS in penile cavernous tissue was significantly higher in the diabetic group than in the normoglycemic group and diabetic+methyltransferase inhibitor group (P < 0.05). CONCLUSION: Although low androgen status inhibited the level of methyltransferase in rat penile cavernous tissue, did not affect the level of methylation in the promoter region of eNOS. Hyperglycemia inhibits the NO level in the penile cavernous tissue and the erectile function of rats by upregulating the methyltransferase level in the penile cavernous tissue and the methylation level in the promoter region of eNOS. Methylation inhibitors can partly improve the erectile function in type 1 diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Disfunção Erétil , Animais , Masculino , Ratos , Androgênios/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Disfunção Erétil/etiologia , Metilação , Metiltransferases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Orquiectomia/efeitos adversos , Ereção Peniana , Pênis/metabolismo , Ratos Sprague-Dawley , Testosterona
5.
J Nutr Biochem ; 123: 109486, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844765

RESUMO

Environmental factors, particularly dietary habits, play an important role in cardiovascular disease susceptibility and progression through epigenetic modification. Previous studies have shown that hyperplastic vascular intima after endarterectomy is characterized by genome-wide hypomethylation. The purpose of this study was to investigate whether methyl donor diet affects intimal hyperplasia and the possible mechanisms involved. Intimal hyperplasia was induced in SD rats by carotid artery balloon injury. From 8 d before surgery to 28 d after surgery, the animals were fed a normal diet (ND) or a methyl donor diet (MD) supplemented with folic acid, vitamin B12, choline, betaine, and zinc. Carotid artery intimal hyperplasia was observed by histology, the effect of MD on carotid protein expression was analyzed by proteomics, functional clustering, signaling pathway, and upstream-downstream relationship of differentially expressed proteins were analyzed by bioinformatics. Results showed that MD attenuated balloon injury-induced intimal hyperplasia in rat carotid arteries. Proteomic analysis showed that there were many differentially expressed proteins in the common carotid arteries of rats fed with two different diets. The differentially expressed proteins are mainly related to the composition and function of the extracellular matrix (EMC), and changes in the EMC can lead to vascular remodeling by affecting fibrosis and stiffness of the blood vessel wall. Changes in the levels of vasculotropic proteins such as S100A9, ILF3, Serpinh1, Fbln5, LOX, HSPG2, and Fmod may be the reason why MD attenuates intimal hyperplasia. Supplementation with methyl donor nutrients may be a beneficial measure to prevent pathological vascular remodeling after injury.


Assuntos
Lesões das Artérias Carótidas , Lesões do Sistema Vascular , Ratos , Animais , Hiperplasia , Ratos Sprague-Dawley , Proteômica , Remodelação Vascular , Dieta , Lesões das Artérias Carótidas/metabolismo
6.
Int Immunopharmacol ; 124(Pt B): 110993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776772

RESUMO

Selenium (Se) is an essential trace element that plays an important role in thyroid physiology. Se supplementation can reduce levels of autoimmune thyroid antibodies, which may be beneficial in Hashimoto's thyroiditis (HT). However, the long-term benefits of Se supplementation for HT patients are controversial and there is no clear clinical evidence to support it, so further basic and clinical research is needed. The effect of Se on immune cells, especially T cells, in autoimmune thyroiditis (AIT) has not been elucidated. Here, we replicated a mouse model of experimental autoimmune thyroiditis (EAT) on a high-iodine diet and treated it with Se supplementation. At week 8 of the experiment, Se supplementation reduced the destruction of thyroid follicles and the infiltration rate of lymphocytes in EAT mice, and reversed the disturbance of peripheral blood thyroxine and thyroid autoantibody levels. Further examination revealed that Se had broad effects on T-cell subsets. Its effects include reducing the production of pro-inflammatory cytokines by Th1 cells, inhibiting the differentiation and production of cytokines by Th2 and Th17 cells, and upregulating the differentiation and production of cytokines by Treg cells. These changes help alleviate thyroid follicle damage during EAT. In conclusion, selenium supplementation has the potential to improve the prognosis of AIT by altering the subset differentiation and/or function of CD4+ T cells.


Assuntos
Doença de Hashimoto , Selênio , Tireoidite Autoimune , Humanos , Camundongos , Animais , Selênio/uso terapêutico , Autoanticorpos , Diferenciação Celular , Citocinas
7.
J Inflamm Res ; 16: 707-721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36852300

RESUMO

Purpose: Neutrophil extracellular traps (NETs) play an important role in ischemia-reperfusion injury (IRI) of the hindlimb. The aim of this study was to investigate the effect of recombinant DNase I and sivelestat in eliminating NETs and their effects on IRI limbs. Patients and Methods: An air pump was used to apply a pressure of 300 mmHg to the root of the right hindlimb of the rat for 2 h and then deflated to replicate the IRI model. The formation of NETs was determined by the detection of myeloperoxidase (MPO), neutrophil elastase (NE), and histone H3 in the skeletal muscles of the hindlimbs. Animals were administered 2.5 mg/kg bw/d DNase I, 15 or 60 mg/kg bw/d sivelestat by injection into the tail vein or intramuscularly into the ischemic area for 7d. Elimination of NETs, hindlimb perfusion, muscle fibrosis, angiogenesis and motor function were assessed. Results: DNase I reduced NETs, attenuated muscle fibrosis, promoted angiogenesis in IRI area and improved limb motor function. Local administration of DNase I improved hindlimb perfusion more than intravenous administration. Sivelestat at a dose of 15 mg/kg bw/d increased perfusion, counteracted skeletal muscle fibrosis, promoted angiogenesis and enhanced motor function. However, sivelestat at a dosage of 60 mg/kg bw/d had an adverse effect on tissue repair, especially when injected locally. Conclusion: Both DNase I and moderate doses of sivelestat can eliminate IRI-derived NETs. They improve hindlimb function by improving perfusion and angiogenesis, preventing muscle fibrosis. Appropriate administration mode and dosage is the key to prevent IRI by elimination of NETs. DNase I is more valid when administered topically and sivelestat is more effective when administered intravenously. These results will provide a better strategy for the treatment of IRI in clinical.

8.
J Periodontal Res ; 58(3): 668-678, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807238

RESUMO

BACKGROUND AND OBJECTIVE: Periodontal ligament stem cells (PDLSCs) are derived from the periodontal ligament and have the characteristics of pluripotent differentiation, including osteogenesis, and are one of the important seed cells in oral tissue engineering. Thyrotropin (TSH) has been shown to regulate bone metabolism independently of thyroid hormone, including the fate of osteoblasts and osteoclasts, but whether it affects osteogenic differentiation of PDLSCs is unknown. MATERIALS AND METHODS: PDLSCs were isolated and cultured from human periodontal ligament and grown in osteogenic medium (containing sodium ß-glycerophosphate, ascorbic acid, and dexamethasone). Recombinant human TSH was added to the culture medium. Osteogenic differentiation of PDLSCs was assessed after 14 days by staining with alkaline phosphatase and alizarin red and by detection of osteogenic differentiation genes. Differentially expressed genes (DEGs) in PDLSCs under TSH were detected by high-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the biological functions and signaling pathways involved in DEGs. RESULTS: We found that osteogenic differentiation of PDLSCs was significantly inhibited in the presence of TSH: including decreased calcium nodule formation, decreased alkaline phosphatase levels, and decreased collagen synthesis. Using high-throughput sequencing, we found changes in the expression of some osteogenesis-related genes, which may be the reason that TSH inhibits osteogenic differentiation of PDLSCs. CONCLUSION: Unless TSH is ≥10 mU/L, patients with subclinical hypothyroidism usually do not undergo thyroxine supplementation therapy. However, in this work, we found that elevated TSH inhibited the osteogenic differentiation of PDLSCs. Therefore, correction of TSH levels in patients with subclinical hypothyroidism may be beneficial to improve orthodontic, implant, and periodontitis outcomes in these patients.


Assuntos
Hipotireoidismo , Osteogênese , Humanos , Osteogênese/fisiologia , Tireotropina/metabolismo , Ligamento Periodontal , Fosfatase Alcalina/metabolismo , Células-Tronco , Diferenciação Celular/fisiologia , Hipotireoidismo/metabolismo , Células Cultivadas , Proliferação de Células
9.
Front Endocrinol (Lausanne) ; 13: 1042511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339447

RESUMO

Leptin has been found to be involved in the development and progression of many autoimmune diseases. As an organ-specific autoimmune disease, the pathogenesis of Hashimoto's thyroiditis has not been fully elucidated. It has been reported that serum leptin level is increased in Hashimoto's thyroiditis, but other studies have not shown any difference. We replicated a mouse model of experimental autoimmune thyroiditis (EAT) with a high-iodine diet and found that injection of the leptin receptor antagonist Allo-aca reduced thyroid follicle destruction and inflammatory cell infiltration in EAT mice, and thyroxine and thyroid autoimmune antibody levels. Further investigation revealed that Allo-aca promotes the differentiation of Treg cells and inhibits the differentiation of Th17 cells. We believe that Allo-aca can alter the differentiation of Treg/Th17 cells by inhibiting the leptin signaling pathway, thereby alleviating thyroid injury in EAT mice. Interfering with the leptin signaling pathway may be a novel new approach to treat treating and ameliorating Hashimoto's thyroiditis.


Assuntos
Doenças Autoimunes , Doença de Hashimoto , Tireoidite Autoimune , Camundongos , Animais , Tireoidite Autoimune/tratamento farmacológico , Células Th17/metabolismo , Células Th17/patologia , Leptina , Linfócitos T Reguladores , Receptores para Leptina , Doenças Autoimunes/metabolismo , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA